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Abstract

We substantially re�ne the theory of singular prinipal bundles introdued in a former paper.

In partiular, we show that we need only honest singular prinipal bundles in our ompati�a-

tion. These are objets whih arry the struture of a rational prinipal bundle in the sense of

Ramanathan. Moreover, we arrive at a muh simpler semistability ondition. In the ase of a

semisimple group, this is just the Gieseker-version of Ramanathan's semistability ondition for

the orresponding rational prinipal G-bundle.

1 Introduction

In our paper [22℄, we presented an approah for ompatifying the moduli spaes of

semistable prinipal G-bundles over a polarized higher dimensional base manifold (X,

OX(1)), for G a redutive linear algebrai group. For this, we �xed a faithful represen-

tation ρ:G −→ GL(V) with ρ(G) � SL(V). Then, we looked at pairs (A, τ) with A a

torsion free sheaf of rank dim(V) with trivial determinant and τ: Sym�(V
A)G −→ OX a

homomorphism of OX-algebras whih is non-trivial in the sense that the indued setion

σ:X −→ Spe(Sym�(V 
A)G) be not the zero setion. Suh a pair was alled a singular

prinipal G-bundle, and if, furthermore, σU(U) � Isom(V 
 OU,A
∨
|U), we spoke of an

honest singular prinipal G-bundle. Here, U is the maximal open subset over whih

A is loally free. In the ase of an honest singular prinipal G-bundle (A, τ), we get a

�
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prinipal G-bundle P(A, τ) over U, de�ned by means of base hange:

P(A, τ) −−−→ Isom(V 
 OU,A
∨
|U)

?

?

y

?

?

y

U
σU−−−→ Isom(V 
 OU,A

∨
|U)/G.

For any positive polynomial δ 2 Q[x] of degree at most dim(X) − 1, we obtained the no-

tion of δ-(semi)stability for singular prinipal G-bundles, and we managed to onstrut

projetive moduli spaes for δ-semistable prinipal G-bundles (A, τ) with �xed Hilbert

polynomial P = P(A). These de�nitions and results have two main drawbaks:

� It is not lear that we need only honest singular prinipal bundles in order to obtain

a projetive moduli spae.

� The notion of δ-semistability seems ompliated and unnatural.

Using results of G�omez and Sols ([8℄, [9℄), one an establish the following properties for

G a lassial group and ρ its \standard" representation or G an adjoint group and ρ the

adjoint representation, and δ a polynomial of degree exatly dim(X) − 1:

� One needs only honest singular prinipal bundles in order to obtain a projetive

moduli spae.

� The onept of δ-semistability does not depend on δ, it implies the Mumford-

semistability of A, and is a natural generalization of Ramanathan's notion of

semistability.

The strategy of G�omez and Sols to derive these properties is the following : There is

a representation κ: GL(V) −→ GL(W) for whih there is a point w0 2 W, suh that

G has �nite index in

eG, the stabilizer of w0, and suh that, for every one parameter

subgroup λ:C�

−→ GL(W) one has µ(λ,w0) � 0 with equality if and only if λ is atually

onjugate to a one parameter subgroup of G within the assoiated paraboli subgroup

Q
GL(V)(λ), see (3). For example, if G = SO(r), we have V = C

r
and W = { symmetri

(r� r)-matries }, w0 = Er, and
eG = O(r), or, if G is an adjoint group, then V = g and

W = Hom(g
g, g), w0 = Lie-braket of g, and eG = Aut(g). In this paper, we will extend

the sope of this strategy by showing that we an, in fat, always �nd a representation κ

with the neessary onditions to establish the above properties. Sine the representation

κ will be given only abstratly, the methods we use will, however, be very di�erent from

those of G�omez and Sols.

We will now desribe the resulting notion of semistability in more detail. Let (A, τ)

be an honest singular prinipal G-bundle, and λ:C�

−→ G a one parameter subgroup of

G. Reall that this yields a paraboli subgroup QG(λ) (see (3) below) and a weighted

ag (V�, α) in V (see 2.1.2, iv). Then, a redution of (A, τ) to λ is a setion β:U0

−→
P(A, τ)|U0/QG(λ) over an open subset U0

� U with odimX(X \ U0) � 2. This de�nes
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a weighted �ltration (A�

β, αβ) of A. Here, αβ = (αs, ..., α1), if α = (α1, ..., αs), and the

�ltration A�

β: 0 ( A1 ( � � � ( As ( A is obtained as follows: The setion

β0: U0

β
−→ P(A, τ)|U0/QG(λ) →֒ Isom(V 
 OU0,A∨

|U0

)/Q
GL(V)(λ)

yields a �ltration

0 ( A0

1 ( � � � ( A0

s ( A∨
|U0

of A∨
|U0

by subbundles with rk(A0

i) = dim(Vi), i = 1, ..., s. This is beause Q
GL(V)(λ) is

just the GL(V)-stabilizer of the ag V�

and, thus, Isom(V 
 OU0,A∨
|U0

)/Q
GL(V)(λ) −→ U

is the bundle of ags in the �bres of A∨
|U0

having the same dimensions as the ag V�

. We

de�ne A00

i := ker(A|U0 −→ A0

∨

s+1−i), i = 1, ..., s, so that we obtain a �ltration

0 ( A00

1 ( � � � ( A00

s ( A|U0

of A|U0

by subbundles. Note that

deg(A00

i) = deg(A0

s+1−i), i = 1, ..., s, (1)

w.r.t. any polarization of X, beause det(A) ∼= OX. Let j:U0

−→ X be the inlusion

and de�ne Ai as the saturation of A \ j
�

(A00

i), i = 1, ..., s. It is worth noting that, if

λ0 = g � λ � g−1
for some g 2 G, then any redution to λ may also be interpreted as

a redution to λ0. Now, we say that an honest singular prinipal G-bundle (A, τ) is

(semi)stable, if for every one parameter subgroup λ:C�

−→ G and every redution β of

(A, τ) to λ, we have

M(A�

β, αβ) (�) 0.

Reall from [22℄ that, for every weighted �ltration (A�, α) of A,

M(A�, α) :=

s∑

i=1

αi(P(A) rkAi − P(Ai) rkA).

Remark. i) The stated ondition implies that the sheaf A is Mumford-semistable.

ii) If G is semisimple, then we have the impliations

P(A, τ) is Ramanathan-stable =⇒ (A, τ) is stable

=⇒ (A, τ) is semistable

=⇒ P(A, τ) is Ramanathan-semistable.

More preisely, in our language, Ramanathan's notion of (semi)stability beomes

s∑

i=1

αi(deg(A) rkAi − deg(Ai) rkA)(�)0 (2)

for every one parameter subgroup λ:C�

−→ G and every redution β of (A, τ) to λ. Here,

deg stands for the degree w.r.t. the hosen polarization. Thus, in our (semi)stability
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onept we have just replaed degrees by Hilbert polynomials whene our (semi)stability

onept might be viewed as a reasonable Gieseker-version of Ramanathan-(semi)stability.

The detailed disussion is ontained in Setion 5.

iii) For redutive groups other than semisimple ones, our notion of slope-semistability

is more restritive than Ramanathan's. In fat, we require Equation (2) to hold for

redutions to any one parameter subgroup whereas Ramanathan looks only at redutions

to one parameter subgroups of the ommutator subgroup [G,G]. The di�erene might

be best understood for the redutive group G :=
∏t

i=1GLri(C). Then, we may identify

a G-bundle with a tuple of vetor bundles (Ei, i = 1, ..., t). Ramanathan's onept of

(semi)stability just says that eah Ei is a (semi)stable vetor bundle, i = 1, ..., t. Our

notion of slope-semistability is equivalent to the fat that E1�� � ��Et is slope-semistable

(by i)). Therefore, it might happen that we �nd no semistable objets although there

are Ramanathan semistable objets. Thus, in that ase, our results will be only for some

speial topologial invariants an alternative to the work of G�omez and Sols.

As usual, we de�ne moduli funtors

M(ρ)
(s)s
P : Sh

C

−→ Set

S 7−→






Equivalene lasses of families of

(semi)stable honest singular prinipal

G-bundles with Hilbert polynomial P





.

We then have

Main Theorem. There exist a projetive sheme M(ρ)ssP and an open subsheme

M(ρ)sP �M(ρ)ssP as well as natural transformations of funtors

ϑ(s)s: M(ρ)
(s)s
P −→ h

M(ρ)
(s)s

P

with the following properties:

1. For every sheme N and every natural transformation ϑ0:M(ρ)ssP −→ hN, there

is one and only one morphism ψ:M(ρ)ssP −→ N with ϑ0 = h(ψ) Æ ϑss.

2. The sheme M(ρ)sP is a oarse moduli spae for the funtor M(ρ)sP.

Remark. i) Note that, if G is a group of the adjoint type and κ is the adjoint represen-

tation, this result is ontained in the work of G�omez and Sols.

ii) Balaji has reently established riteria for the non-emptiness of the M(ρ)sP when

X is a surfae. We refer to his forthoming paper [1℄.

We hope that the results of this paper will make the theory developed in [22℄ more

transparent and appliable. Finally, let us mention that our approah has the following

advantages:
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� We get an alternative onstrution for the moduli spae of prinipal G-bundles over

urves, in ase G is a semisimple group (ompare [20℄, [7℄, and [2℄). In fat, the

tehniques used here may be viewed as an alternative approah to the semistable

redution theorem ([7℄, [2℄) whih readily extends to the semistable redution the-

orem for semistable honest singular G-bundles in higher dimensions. On the other

hand, the approah of Balaji and Seshadri yields the semistable redution theo-

rem for slope-semistable honest singular G-bundles in higher dimensions. When X

is a surfae, the latter result enables one to give an algebrai onstrution of the

Donaldson-Uhlenbek ompati�ation. This is all explained in [1℄.

� It might be also applied to singular varieties [3℄, if one an make sense of the

ondition \detA is trivial". For reent progress in the ase of irreduible nodal

urves, we refer the reader to [26℄. In our forthoming paper [23℄, we will use the

results of this and our former paper [22℄ to obtain \nie" moduli spaes for singular

prinipal bundles on irreduible nodal urves.

� Using a faithful representation ρ:G −→ GL(V) allows one to treat \deorated"

singular prinipal bundles as well. This is beause any representation of G extends

to a representation of GL(V) (see [5℄, p. 40). We intend to treat this theory (over

urves) in the future.

Conventions

The general setting is as in [22℄. We work over the �eld of omplex numbers. A sheme

will be a sheme of �nite type over C. For a vetor bundle E over a sheme X, we set

P(E) := Proj(Sym�(E)), i.e., P(E) is the projetive bundle of hyperplanes in the �bres of

E. An open subset U � X is said to be big, if odimX(X \U) � 2.
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2 Preliminaries

2.1 Geometric Invariant Theory

Let G be a omplex redutive group whih ats on the projetive sheme X, and suppose

this ation is linearized in the ample line bundle L. Given a one parameter subgroup

λ:C�

−→ G and a point x 2 X, we form x∞ := limz→∞ λ(z) � x. Then, x∞ remains

�xed under the C

�

-ation indued by λ and the G-ation, so that C

�

ats on Lhxi by a

harater, say, z 7−→ zγ, z 2 C�

. One sets

µL(λ, x) := −γ.

Lemma 2.1.1. Let G be a redutive algebrai group, X and Y projetive shemes

equipped with a G-ation, and π:X −→ Y a �nite and G-equivariant morphism.

Suppose L is a G-linearized ample line bundle on Y. Then, for any point x 2 X and

any one parameter subgroup λ:C�

−→ G, one has

µπ�L(λ, x) = µL(λ, π(x)).

Proof. Without loss of generality, we may suppose that L and π�L are both very ample.

De�ne V := H0(X, π�L) andW := H0(Y,L). These are G-modules, the inlusion ι:W � V

is G-equivariant and yields a G-equivariant rational map π:P(V) 99K P(W), and there

is the following ommutative diagram

X
→֒

−−−→ P(V)

π

?

?

y

?

?

y
π

Y
→֒

−−−→ P(W)

of G-equivariant maps. Now, hoose a G-module splitting V∨ ∼=W∨
�ker(ι∨). Note that

X \ P(ker(ι∨)∨) = ∅, beause π is de�ned in X. A one parameter subgroup λ de�nes

splittings into non-trivial eigenspaes

W∨ ∼=
l
M

i=1

Wi and ker(ι∨) ∼=
m
M

j=1

Ij.

For V = W1, ...,Wl, I1, ..., Im, let γ(V) be the integer with λ(z) � [v] = [zγ(V)
� v] for all

z 2 C�

, v 2 V \ {0}. Then, for x = [v],

µπ�L(λ, x) = max{γ(V) | v has a non-trivial omponent in V }

µL(λ, π(x)) = max

V=I1,...,Im
{γ(V) | v has a non-trivial omponent in V }.

Therefore, µL(λ, π(x)) � µπ�L(λ, x). Suppose µπ�L(λ, x) = γ. Then, there must be an

index 1 � i0 � l, suh that Wi0 is the eigenspae for the harater z 7−→ zγ and v has a

non-trivial projetion to Wi0 , where [v] = x. Otherwise, we would have

lim

z→∞
λ(z) � x 2 X \ P(ker(ι∨)∨),
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but the right hand side is empty. This shows that µL(λ, π(x)) � γ and �nishes the

proof.

One Parameter Subgroups and Parabolic Subgroups. — Let G be a omplex redu-

tive group, and λ:C�

−→ G a one parameter subgroup. Then, we de�ne the paraboli

subgroup

QG(λ) :=
{
g 2 G | lim

z→∞
λ(z) � g � λ(z)−1

exists in G
}
. (3)

In fat, any paraboli subgroup of G arises in this way. We refer the reader to the

books [25℄ and [17℄, Chapter 2.2, for more details. The entralizer LG(λ) of λ is a Levi-

omponent of QG(λ), i.e., QG(λ) = Ru(QG(λ)) ⋊ LG(λ). In this piture, the unipotent

radial of QG(λ) is haraterized as

Ru(QG(λ)) =
{
g 2 QG(λ) | lim

z→∞
λ(z) � g � λ(z)−1 = e

}
.

Remark 2.1.2. i) In the soures quoted above, one takes the limit z → 0 in order to

de�ne a paraboli subgroup PG(λ). Thus, we have

QG(λ) = PG(−λ). (4)

ii) Let G be a omplex redutive group whih ats on the projetive sheme X, and

suppose this ation is linearized in the ample line bundle L. Then, for any point x 2 X,

any one parameter subgroup λ:C�

−→ G, and any g 2 QG(λ)

µL(λ, x) = µL(λ, g � x).

This is proved in [17℄, Chapter 2.2.

iii) If we are given an injetive homomorphism ι:G →֒ H, then we obviously �nd

QH(λ) \ G = QG(λ).

iv) If G = GL(V), then the group QG(λ) is the stabilizer of the ag

V�

: 0 ( V1 ( V2 ( � � � ( Vs ( V

where Vi :=
Li

j=1V
j
, Vj

is the eigenspae of the C

�

-ation oming from λ for the harater

z 7−→ zγj
, and γ1 < � � � < γs+1 are the di�erent weights ourring. We also set αi :=

(γi+1 − γi)/ dim(V), i = 1, ..., s. The pair (V�, α) is referred to as the weighted ag of

λ. Note, that if λ0 is onjugate to λ, then dim(V 0

i) = dim(Vi) and α
0

i = αi, i = 1, ..., s.

Example 2.1.3 (Ations on Homogeneous Spaes). Let H be a redutive algebrai

group, G a losed redutive subgroup, and X := H/G the assoiated aÆne homogeneous

spae. Then, the following holds true:

Proposition 2.1.4. Suppose that we are given a point x 2 X and a one parameter

subgroup λ:C�

−→ H, suh that x0 := limz→∞ λ(z)�x exists in X. Then, x 2 Ru(QH(λ))�

x0.
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Proof (after Kraft/Kuttler). We may assume x0 = [e]. De�ne

Y := {y 2 X | lim
z→∞

λ(z) � y = x0 }.

This set is losed and invariant under the ation of Ru(QH(λ)). Note that viewing X

as a variety with C

�

-ation, x0 is the unique point in Y with a losed C

�

-orbit, and by

the �rst lemma in Setion III of [15℄, there is a C

�

-equivariant morphism f:X −→ Tx0(X)

whih maps x0 to 0 and is �etale in x0. Obviously, f maps Y to

{ v 2 Tx0X | lim
z→∞

λ(z) � v = 0 } = uH(λ)/uG(λ) � h/g. (5)

Here, uH(λ) and uG(λ) are the Lie algebras of the unipotent radials Ru(QH(λ)) and

Ru(QG(λ)), respetively, and h and g are the Lie algebras of H and G, respetively. Note

that h and g reeive their G-module strutures through the adjoint representation of G,

and, moreover, by de�nition,

uH(λ) = { v 2 h | lim
z→∞

λ(z) � v = 0 }.

This yields the asserted equality in (5). The morphism f provides a C

�

-equivariant

isomorphism Y −→ uH(λ)/uG(λ). (e.g., Theorem 3.4 in [12℄). On the other hand,

uH(λ)/uG(λ) equals the tangent spae of the Ru(QH(λ))-orbit of x0 at X. Therefore,

sine Ru(QH(λ)) � x0 � Y, Y must agree with the losed orbit Ru(QH(λ)) � x0, and we are

done.

The Instability Flag. — In this setion, K will be an algebraially losed �eld of

harateristi zero. (Besides for C, we will need the results also for the algebrai losure

of the funtion �eld of X.) We start with the group GLn(K). Let T be the maximal torus

of diagonal matries. The haraters ei: diag(l1, ..., ln) 7−→ li, i = 1, ..., n, form a basis

for the harater group X�(T), and

(., .)�: X�
R

(T)� X�
R

(T) −→ R

�∑n
i=1xi � ei,

∑n
i=1yi � ei

�

7−→
∑n

i=1xiyi

de�nes a salar produt on X�
R

(T) := X�(T) 

Z

R whih is invariant under the ation of

the Weyl group W(T) := N(T)/T . This yields isomorphisms

X�
R

(T) ∼= Hom

R

(X�
R

(T),R) ∼= X
�,R(T) := X

�

(T)

Z

R.

For the seond identi�ation, we use the duality pairing h., .i
R

:X
�,R(T) � X

�

R

(T) −→ R

whih is the R-linear extension of the anonial pairing h., .i:X
�

(T)�X�(T) −→ Z. Sine

the pairing (., .)� is W(T)-invariant, the norm k.k
�

indued on X
�,R(T) extends to a

GLn(K)-invariant norm k.k on the set of all one parameter subgroups of GLn(K) (see

[17℄, Chapter 2.2, Lemma 2.8).
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Next, suppose we are given a representation κ: GLn(K) −→ GL(W). This leads to a

deomposition

W ∼=
M

χ2X�(T)

Wχ

of W into eigenspaes and de�nes the set of weights of κ (w.r.t. T)

WT(κ, T) := {χ 2 X�(T) |Wχ
6= {0} },

and, for any w 2W, the set of weights of w (w.r.t. T)

WT(w, T) := {χ 2WT(κ, T) |w has a non-trivial omponent in Wχ }.

For a one parameter subgroup λ 2 X�
R

(T), we then set

µκ(λ,w) := max{ hλ, χi
R

|χ 2WT(w, T) }.

For any other maximal torus T 0 � G, we hoose an element g 2 G with g � T 0 � g−1 = T ,

and set, for λ 2 X�
R

(T 0),

µκ(λ,w) := µκ(g � λ � g
−1, g �w). (6)

Example 2.1.5. i) Let P(W∨) denote the spae of lines in W. Then, κ yields an ation

of GLn(K) on P(W
∨) and a linearization of that ation in O

P(W∨)(1). With the former

notation, we �nd

µO
P(W∨)

(1)(λ, [w]) = µκ(λ,w),

for every point w 2W \ {0} and every one parameter subgroup λ:Gm(K) −→ GLn(K).

ii) Our onvention is the same as in [21℄ and [22℄, but di�ers from the one in [19℄.

More preisely, let µRRκ (λ,w) be the quantity de�ned in [19℄. Then,

µκ(λ,w) = −µRRκ (−λ,w). (7)

Now, suppose we are also given a redutive subgroup G � SLn(K). For simpliity,

assume that there is a maximal torus TG of G whih is ontained in T . Otherwise,

we may pass to a di�erent maximal torus T 0 of GLn(K). From (., .)� and the dual

pairing (., .)
�

: X
�,R(T)�X�,R(T) −→ R, we obtain the indued pairing (., .)

�,G: X�,R(TG)�

X
�,R(TG) −→ R. Let k.kG be the restrition of the norm k.k to the one parameter

subgroups of G. Note that, for λ 2 X
�,R(TG), one has kλkG =

q

(λ, λ)
�,G. This last

observation implies that (., .)
�,G is invariant under the ation of the Weyl groupW(TG) :=

NG(TG)/TG. By polarization, this is equivalent to the fat that k.kG restrited to X
�,R(TG)

is invariant under W(TG), and this is obvious from the de�nition.

Theorem 2.1.6 (Kempf). Suppose w 2W is a G-unstable point. Then, the funtion

λ 7−→ νκ(λ,w) := µκ(λ,w)/kλkG on the set of all one parameter subgroups of G

attains a minimal value m0 2 Q<0, and there is a unique paraboli subgroup Q(w) �

G, suh that Q(w) = QG(λ) for every one parameter subgroup λ:Gm(K) −→ G with

ν(λ,w) = m0. Moreover, if λ and λ0 are two indivisible one parameter subgroups

with ν(λ,w) = m0 = ν(λ0, w), then there exists a unique element u 2 Ru(Q(w)),

suh that λ0 = u � λ � u−1
.
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Proof. This is Theorem 2.2 in [14℄. It is also proved in [19℄, Theorem 1.5. One has to

use (4) and (7) to adapt the formulation to the onventions we use. Sine this theorem

plays suh a ruial rôle in our onsiderations, we briey remind the reader of the idea of

proof. Reall Equation (6) and the fat that kλkG = kg �λ �g−1
kG for all λ:Gm(K) −→ G,

g 2 G. First, for an element g 2 G, we searh for

min

{ µκ(λ, g �w � g−1)

kλkG

�

�

�λ 2 X
�

(TG)
}
. (8)

Write

WT(g �w, T) := {χ
g
1, ..., χ

g
s(g) }.

We obtain the linear forms

l
g
i : X

�,R(TG) −→ R

λ 7−→ hλ, χ
g
i iR, i = 1, ..., s(g),

on X
�,R(TG) whih are atually de�ned over Q. One has now to study the funtion

lg: λ 7−→ max

i=1,...,s(g)
l
g
i (λ)

on the norm-one hypersurfae H in X
�,R(TG) where the assumption is that l possesses a

negative value. One then shows that a funtion like lg admits indeed a minimum in a

unique point h 2 H. Moreover, the fat that the l
g
i are de�ned over Q grants that the ray

R>0 � h ontains rational and integral points. See Lemma 1.1 in [19℄ for this disussion.

Thus, the expression (8) agrees with lg(h).

Finally, one remarks that lg depends only on the set of weights WT(g�w, T) for whih

there are only �nitely many possibilities, so that there is a �nite set Γ � G with

WT(g �w, T) 2
{
WT(γ �w, T) |γ 2 Γ

}
, for all g 2 G.

Thus, we have to show that

min

γ2Γ
min{ lγ(λ) | λ 2 H }

exists, but this is now lear.

Let w and m0 be as in the theorem. We all an indivisible one parameter subgroup

λ:Gm(K) −→ G with ν(λ,w) = m0 an instability one parameter subgroup for w. Note

that, by the theorem, every maximal torus of Q(w) ontains a unique instability one

parameter subgroup for w.

Remark 2.1.7. There is also a anonial paraboli subgroup Q
GLn(K)(w) of GLn(K)

with Q
GLn(K)(w) \ G = Q(w). Indeed, if λ is any instability subgroup of w, then we

set Q
GLn(K)(w) := QGLn(K)(λ). This is well-de�ned beause of the last statement in the

theorem.
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For every maximal torus T 0 of GLn(K), the given produt on X�
R

(T) indues the

pairing (., .)�T0:X
�

R

(T 0) � X�
R

(T 0) −→ R, (χ, χ0) 7−→ (χ(g � . � g−1), χ0(g � . � g−1))�, where

g 2 GLn(K) is an element, suh that g � T � g−1 = T 0. Here, the invariane of (., .)�

under the Weyl group W(T) implies that this produt does not depend on the hoie of

g. We set HG(w) := Q(w)/Ru(Q(w)), and H
GLn(K)(w) := Q

GLn(K)(w)/Ru(QGL(W)(w)).

Now, λ de�nes an antidominant harater on H
GLn(K)(w) as follows: Let T be a maximal

torus of H
GLn(K)(w). Under the isomorphism L

GLn(K)(λ) −→ H
GLn(K)(w) indued by the

quotient morphism π:Q
GLn(K)(w) −→ H

GLn(K)(w), there is a unique maximal torus T 0 �

L
GLn(K)(λ) mapping onto T . Then, as we have explained before, there is a salar produt

(., .)�T0:X
�

R

(T 0) � X�
R

(T 0) −→ R. This provides us with the unique element lT0(λ), suh

that (lT0(λ), χ)
�

T0 = hλ, χi
R

for all χ 2 X�
R

(T 0). The omputation below (Example 2.1.8)

shows that lT0(λ) is indeed a harater of L
GLn(K)(λ) and, thus, of H

GLn(K)(w). Call

this harater χ0. Let T 00 be any other maximal torus of Q
GLn(K)(w). Then, there is

an element p 2 Q
GLn(K)(w) with p � T 0 � p−1 = T 00. For all one parameter subgroups

eλ:Gm(K) −→ T 0, we have

hp � eλ � p−1, χ0i = h

eλ, χ0i = (eλ, λ)�T0 = (p � eλ � p−1, p � λ � p−1)�T00,

so that p � λ � p−1
and the maximal torus T

0

:= π(T 00) yield indeed the same harater χ0.

Example 2.1.8. Fix integers 0 =: n0 < n1 < � � � < ns < ns+1 := n and γ1 < � � � < γs+1

with

∑s+1
i=1 γi(ni − ni−1) = 0. This de�nes a one parameter subgroup λ:Gm(K) −→

SLn(K) via

λ(z) � bj := z
γi
� bj, j = ni−1+ 1, ..., ni, i = 1, ..., s+ 1.

Here, b1, ..., bn is the standard basis forK
n
. Then, L

GLn(K)(λ) ∼= GLn1
(K)�GLn2−n1

(K)�

� � ��GLn−ns(K), the latter group being embedded as a group of blok diagonal matries

into GLn(K). One heks that

lT(λ)(m1, ...,ms+1) = det(m1)
γ1
� ... � det(ms+1)

γs+1 , 8 (m1, ...,ms+1) 2 LGLn(K)(λ).

Let w 2W \ {0} be an unstable point, and let Q(w) � G be the assoiated paraboli

subgroup. Moreover, hoose an instability one parameter subgroup λ: Gm(K) −→ G

for w. This yields, in partiular, a ag W�

: 0 ( W1 ( � � � ( Wt ( W. Next, set

j0 := min{ j = 1, ..., t+ 1 |w 2Wj }. Then, w de�nes a point x∞ 2 P((Wj0/Wj0−1)
∨). Let

m0 2 Q<0 be as in Theorem 2.1.6, and q := m0 � kλkG = µκ(λ,w) 2 Z<0. Finally, de�ne

χ
�

:= q � χ0|HG(w).

Proposition 2.1.9 (Ramanan-Ramanathan). The point x∞ 2 P((Wj0/Wj0−1)
∨) is

semistable for the indued HG(w)-ation and its linearization in O
P((Wj0

/Wj0−1)∨)(1)

twisted by the harater χ
�

.

Proof. This is Proposition 1.12 in [19℄. We observe that, by (4) and (7), we have χ
�

= χ

with χ the harater onstruted in [19℄. (Our expliit onstrution shows that we may

take s = 1 and r = 1 in the proof of [19℄, Proposition 1.12). Note that Ramanan and
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Ramanathan show that x∞ = [w∞ ], where w∞ 2Wj0/Wj0−1
Kχ−1
�

is a semistable point

and Kχ−1
�

is the one dimensional HG(w)-module assoiated with the harater χ−1
�

. This

gives the laimed linearization.

Finally, we need Kempf's rationality result. For this, let K be a non-algebraially

losed �eld of harateristi zero (in our appliation, this will be the funtion �eld of an

algebrai variety), G −→ Spe(K) a K-group, andW a �nite dimensional K-vetor spae.

Fix an algebrai losure K of K, and set G
K

:= G�
Spe(K) Spe(K) and WK

:=W 
KK.

Suppose that we are given a K-rational representation κ: G
K

−→ GL(W
K

).

Theorem 2.1.10 (Kempf). If T � G
K

is a maximal torus whih is de�ned over K

and KT/K is a �nite extension of K, suh that TK�Spe(K) Spe(KT) ∼= Ga(KT)� � � � �

Ga(KT), TK � G being the K-group with TK�Spe(K) Spe(K) = T , then, for a produt

(., .)�:X�
R

(T) � X�
R

(T) −→ R whih is invariant under both the Weyl group W(T)

and the ation of the Galois group Gal(K/K) via its �nite quotient Gal(KT/K), the

following holds true: If w 2W
K

is an unstable K-rational point, then the paraboli

subgroup QG
K

(w), assoiated to w by means of the norm k.kG
K

on the one parameter

subgroups of G
K

whih is indued by (., .)�, is de�ned over K.

Proof. This is part of Theorem 4.2 in [14℄. See also [19℄ for generalizations.

Weighted Projective Spaces. — For a given tuple w = (w0, ..., wn) of positive inte-

gers, the quotient of A

n+1\{0} w.r.t. to the C�

-ation z�(x0, ...., xn) = (zw0
�x0, ..., z

wn
�xn)

is the so-alled weighted projetive spae Pw. One has Pw
∼= Proj(C[y0, ..., yn]) where

one assigns the weight wi to the variable yi, i = 0, ..., n. Then, the degree is de�ned

for every monomial in the yi, and for eah non-negative integer ω, we an speak of the

homogeneous elements of degree ω and de�ne C[y0, ..., yn]
ω
� C[y0, ..., yn] as the �nite

dimensional vetor spae generated by the homogeneous elements of degree ω. We also

de�ne the subalgebra

C[y0, ..., yn]
(ω) :=

M

i2Z
�0

C[y0, ..., yn]
iω.

If ω is a suÆiently large ommon multiple of w0, ..., wn, the subalgebra C[y0, ..., yn]
(ω)

is generated by Vω := C[y0, ..., yn]
ω
([18℄, Chapter III, p. 282), i.e., we have a surjetion

Sym

�

Vω −→ C[y0, ..., yn]
(ω)

that de�nes an embedding ι:Pw →֒ P(Vω).

Remark 2.1.11. Alternatively, pik primitive wi-th roots of unity ζi, i = 1, ..., n, and

look at the ation of Zw := Zw0
� � � � � Zwn on Pn by

(b0, ..., bn) � [x0 : � � � : xn] := [ζb0
0 �x0 : � � � : ζ

bn
n �xn], (b0, ..., bn) 2 Zw, [x0 : � � � : xn] 2 Pn.

Then, Pn/Zw
∼= Pw, where the quotient morphismPn −→ Pw orresponds to the algebra

homomorphism C[y0, ..., yn] −→ C[x0, ..., xn], yi 7−→ xwi

i , i = 0, ..., n.
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We will need an intrinsi desription of the morphism ψ:An+1 \ {0} −→ P(Vω). For

this, let v1 < � � � < vm be the di�erent integers appearing in w, and let

C

n+1 = V1� � � � � Vm

be the orresponding deomposition into eigenspaes. For ω as above, the morphism ψ

omes from

M

(d1,...,dm):

v1d1+���+vmdm=ω

Sd1(V∨
1 )
 � � � 
 Sdm(V∨

m)
 O
A

n+1\{0}

∑
Sd1+���+dm (τ)

−→ O
A

n+1\{0}

with τ:Cn+1∨

 O

A

n+1\{0} −→ O
A

n+1\{0} the dual of the tautologial setion.

One heks easily that

µ
id

(λ, v) < (= / >) 0 ⇐⇒ µO
P(Vω)(1)(λ,ψ(v)) < (= / >) 0, (9)

for every point v 2 An+1 \ {0} and every one parameter subgroup λ:C�

−→ GLn+1(C).

2.2 Principal Bundles

Let U be a smooth algebrai variety and G a redutive algebrai group over the �eld

of omplex numbers. Suppose we are given a prinipal G-bundle P over U. If F is an

algebrai variety and α:G � F −→ F is an ation of G on F, then we may form the

geometri quotient

P(F, α) := (P� F)/G

w.r.t. the ation (p, f) � g := (p � g, g−1
� f) for all p 2 P, f 2 F, and g 2 G. Note

that P(F, α) is a �bre spae with �bre F over U whih is loally trivial in the �etale

topology. An important speial ase arises when we look at the ation c:G� G −→ G,

(g, h) 7−→ g � h � g−1
, of G on itself by onjugation. Then, the assoiated �bre spae

G(P) := P(G, c) −→ U is a redutive group sheme over U, and, for any pair (F, α) as

above, we obtain an indued ation

a: G(P)�U P(F, α) −→ P(F, α).

IfW is a vetor spae and κ:G −→ GL(W) is a representation, we set Pκ := P(W,κ). Note

that the formation of P(F, α) ommutes with base hange. For additional information,

we refer the reader to [24℄.

Parabolic Subgroup Schemes. — Let S be any sheme and suppose GS −→ S is a

redutive group sheme over S. A subgroup QS � GS is alled a paraboli subgroup, if

it is smooth over S and, for any geometri point s of S, the quotient GS,s/QS,s is proper.

The funtor

Par(GS): ShemesS −→ Sets

(T −→ S) 7−→
{
Paraboli subgroups of GS�S T

}

is then representable by an S-sheme Par(GS). For the details, we refer the reader to [6℄.
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Example 2.2.1. Let G be a omplex redutive group and P be a prinipal G-bundle over

the variety U. Denote by P the set of onjugay lasses of paraboli subgroups in G and

pik for eah lass p 2 P a representative Qp. Then,

Par(G(P)) ∼=
G

p2P

P/Qp.

Sections in Associated Projective Bundles. — Let P −→ U be a prinipal bundle as

before. Suppose we are given a representation κ:G −→ GL(W). This yields an ation

α:G � P(W∨) −→ P(W∨) and a linearization α:G � O
P(W∨)(1) −→ O

P(W∨)(1) of this

ation. Let P

ss

� P(W∨) be the open subset of semistable points.

Proposition 2.2.2 (Ramanan-Ramanathan). Assume that U is a big open subset

of the manifold X. Let σ:U −→ P(P(W∨), α) be a setion, and Lσ the pullbak | via

σ | of the line bundle P(O
P(W∨)(1), α) −→ P(P(W∨), α) to U. If σ(η) 2 P(Pss, α),

then

deg(Lσ) � 0.

Here, η is the generi point of U.

Proof. This is Proposition 3.10, i), in [19℄.

3 Inhomogeneous Decorations

Fix tuples a = (a1, ..., an), b = (b1, ..., bn), and c = (c1, ..., cn) of non-negative integers,

suh that ai − rci > 0, for i = 1, ..., n. If ai − rci = aj − rcj, 1 � i < j � n, we all the

triple (a, b, c) homogeneous. We look at pairs (A, ϕ) with A a torsion free sheaf of rank

r and ϕ:Aa,b,c −→ OX a non-trivial homomorphism. Here,

Aa,b,c :=
n
M

i=1

(A
ai)
�bi


 (det(A)∨)

ci .

We all (A, ϕ) a torsion free sheaf with a deoration of type (a, b, c), and we say

that (A, ϕ) is equivalent to (A0, ϕ0), if there is an isomorphism ψ:A −→ A0

, suh that

ϕ = ϕ0

Æ ψa,b,c, letting ψa,b,c:Aa,b,c −→ A0

a,b,c be the isomorphism indued by ψ. The

deoration ϕ breaks into omponents

ϕi: (A
ai)
�bi

−→ det(A)
ci , i = 1, ..., n.

Given a weighted �ltration (A�, α), we de�ne the weight vetor

γ = (γ1, ..., γs+1) :=

s∑

i=1

αi � (rk(Ai) − r, ..., rk(Ai) − r︸ ︷︷ ︸
rk(Ai)�

, rk(Ai), ..., rk(Ai)︸ ︷︷ ︸
(r−rk(Ai))�

), r := rk(A),
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and set, for As+1 := A and i = 1, ..., n,

µ(A�, α;ϕi) := −min

{
γj1+� � �+γjai

| (j1, ..., jai
) 2 { 1, ..., s+ 1 }�ai : ϕi|(Aj1


���
Ajai
)�bi 6� 0

}

as well as

µ(A�, α;ϕ) := max

{
µ(A�, α;ϕi) | i = 1, ..., n

}
.

Example 3.1.3. Let G be a redutive group, ρ:G −→ GL(V) a faithful representation,

and κ: GL(V) −→ GL(W) a representation of GL(V). For non-negative integers a, b, c,

we have the GL(V)-module

Va,b,c = (V
a)
�b

 (

r̂

V)

−c
, r := dim(V),

and, for tuples a = (a1, ..., an), b = (b1, ..., bn), and c = (c1, ..., cn), we de�ne the

GL(V)-module

Va,b,c :=
n
M

i=1

Vai,bi,ci .

The orresponding representation is denoted by κa,b,c. We may assume that W is a

submodule of Va,b,c ([21℄, Setion 1.1). Thus, there exists a G-submodule W 0

of Va,b,c

whih is omplementary toW and we �nd an isomorphism Va,b,c
∼=W�W 0

of G-modules.

Furthermore, suppose (A, τ) is an honest singular prinipal G-bundle. Then, over the

open set U where A is loally free, we have the prinipal bundle P := P(A, τ). Viewing

κ as a representation of G, we have the assoiated vetor bundle Pκ with �bre W. By

our assumption, this is a subbundle of A∨
|U;a,b,c. Thus, a setion

ϕ0

: U −→ Pκ

de�nes omponents

ϕ0

i: U −→
�

A∨
|U


ai
�

�bi


 det(A|U)

ci , i = 1, ..., n,

whih orrespond to

ϕ00

i : (A

ai

|U )
�bi

−→ det(A|U)

ci , i = 1, ..., n,

and the latter extend uniquely to

ϕi: (A

ai)

�bi
−→ det(A)
ci , i = 1, ..., n.

Altogether, we obtain an assoiated torsion free sheaf A with a deoration ϕ of type

(a, b, c). If we are given a one parameter subgroup λ:C�

−→ G and a redution β of

(A, τ) to the one parameter subgroup λ:C�

−→ G, then we an give a more intuitive

desription of µ(A�

β, αβ;ϕ). Over the open subset U0

, the redution β gives rise to a
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QG(λ)-bundle. Making U smaller and passing to an �etale overing

eU, we may trivialize

this QG(λ)-bundle. Suh a trivialization gives rise to an isomorphism

Ψ
eU: A∨

|eU
∼= V � eU

with

Ψ
eU
(A0

i) = Vi�
eU, i = 1, ..., s.

Here, (0 ( V1 ( � � � ( Vs ( V, α) is the weighted ag of λ and the A0

i, i = 1, ..., s, are as

in the introdution. Looking at

ϕ0

|eU
:

eU −→ P
κ|eU

∼=W �

eU −→W,

one �nally has

max

{
µκ(λ,ϕ

0

|eU
(x)) | x 2 eU

}
= µ(A�

β, αβ;ϕ). (10)

This is explained in detail in Setion 2.1.1 of [21℄.

Let v1 < � � � < vm be the integers whih our as ai − rci, i = 1, ..., n. Set Vj :=
L

i:ai−rci=vj Vai,bi,ci , j = 1, ...,m. Choose a suÆiently large ommon multiple ω of

v1, ..., vm as in the setion on weighted projetive spaes. Then, letting C

�

at on Vj

by multipliation with zvj , the weighted projetive spae (Va,b,c \ {0})/C
�

gets embedded

into P(Vω),

Vω :=
M

(d1,...,dm):

v1d1+���+vmdm=ω

Sd1(V∨
1 )
 � � � 
 Sdm(V∨

m).

We may �nd positive integers A,B, C with A − rC = −ω, suh that Vω is a diret

summand of VA,B,C ([21℄, Corrolary 1.2) and we have an embedding P(Vω) →֒ P(VA,B,C).

Let (A, ϕ) be a torsion free sheaf with a deoration of type (a, b, c), then ϕ de�nes,

for every tuple d = (d1, ..., dm) with v1d1 + � � �+ vmdm = ω, a homomorphism

eϕd: S
d1(B1)
 � � � 
 Sdm(Bm) −→ OX.

These homomorphisms add to

eϕ:
M

(d1,...,dm):

v1d1+���+vmdm=ω

Sd1(B1)
 � � � 
 Sdm(Bm) −→ OX,

Bj :=
L

i:ai−rci=vj Aai,bi,ci , j = 1, ...,m. This �nally de�nes

bϕ: (A
A)
�B

−→ det(A)
C.

For every weighted �ltration (A�, α) of A, we set

ν(A�, α;ϕ) :=
1

ω
� µ(A�, α; bϕ).
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Next, we also �x a positive polynomial ε 2 Q[x] of degree at most dim(X) − 1. Then, a

torsion free sheaf (A, ϕ) with a deoration of type (a, b, c) is alled ε-(semi)stable, if,

for every weighted �ltration (A�, α), the inequality

M(A�, α) + ε � ν(A�, α;ϕ) (�) 0

is satis�ed. This gives rise to a moduli problem whih is redued to the homogeneous

ase | overed by [21℄ and [8℄ | via the above assignment ϕ 7−→ bϕ and then solved

along the lines of our onstrution in [22℄ and will, therefore, not be explained here. The

ruial fat is that, for a given Hilbert polynomial P and a given polynomial ε as above,

the ε-semistable pairs (A, ϕ) with P(A) = P form a projetive moduli spae.

An important fat is that (9) implies

ν(A�, α;ϕ) < (= / >) 0 ⇐⇒ µ(A�, α;ϕ) < (= / >) 0. (11)

Remark 3.1.4. i) Unlike the situation in [22℄, we an hoose ω here to work for all the

objets we onsider, beause it obviously depends only on the �xed input data a, b, and

c.

ii) Let (A, bϕ) be as above. Then, as in [21℄, Lemma 1.8, i), for every saturated

subsheaf 0 ( B ( A, one �nds µ(0 ( B ( A, (1); bϕ) � A(r− 1). Thus, the semistability

ondition yields

µ(B) � µ(A) +
ε0 �A � (r− 1)

r �ω
,

ε0 being the oeÆient of the monomial of degree dimX − 1 in ε.

The following result will be the basis of our \semistable redution theorem" for

semistable honest prinipal G-bundles, and, thus, onstitutes a ore result of this paper.

Its proof follows the strategy of Ramanan and Ramanathan in their proof of Proposi-

tion 3.13.

Theorem 3.1.5. Suppose the stability parameter ε has degree exatly dim(X)−1 and

that (A, ϕ) is an ε-semistable torsion free sheaf with a deoration of type (a, b, c),

suh that deg(A) = 0. Then the following holds true: Denote by η the generi

point of X and by K its residue �eld, and hoose a trivialization A∨

OX

OX,η
∼=

V �

Spe(C) Spe(K). Then, the point

eση 2 Va,b,c �Spe(C) Spe(K) de�ned by ϕ and

the trivialization lies in Vss

a,b,c �Spe(C) Spe(K). Here, Vss

a,b,c is the open subset of

SL(V)-semistable points in Va,b,c.

Proof. Let us start with some notation. We use the representation κ := κa,b,c: GL(V) −→
GL(Va,b,c) and let α: GL(V)� Y −→ Y, Y := P(V∨

a,b,c), be the indued ation. Moreover,

P := Isom(V 
 OU,A
∨
|U) is the prinipal GL(V)-bundle assoiated with A|U over the

maximal open subset U over whih A is loally free. The group GL(V) ats on SL(V) and

GL(V) by onjugation c, and we let SL(P) � GL(P) be the orresponding group shemes

over U. We �x an algebrai losure K of K. A trivialization as hosen in the statement of
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the theorem is equivalent to a trivialization P�USpe(K) ∼= GL(V)�
Spe(C)Spe(K). The

latter identi�ation will indue trivializations of the objets introdued below. De�ne

Y := P(Y, α)�U Spe(K) ∼= Y �
Spe(C) Spe(K),

G := SL(V), and

G := SL(P)�U Spe(K) ∼= G�
Spe(C) Spe(K).

Finally, set L := OY(1), and L := OY(1)
∼= L�

Spe(C) Spe(K).

Next, we remind the reader of Proposition 1.14 in Chapter 1.4 of [17℄:

Proposition 3.1.6 (Mumford). The set of G-semistable points in Y w.r.t. the lin-

earization in L is given as

Yss(L)�
Spe(C) Spe(K).

Here, Yss(L) is the set of G-semistable points in Y w.r.t. linearization in L.

Now, let NC � Va,b,c be the one of SL(V)-unstable points. Reall that we are given

a setion σU:U −→ Pκ. Set ση := σU�U Spe(K) 2 Y. The negation of the assertion of

the theorem is, by Proposition 3.1.6,

ση 2 NC�
Spe(C) Spe(K).

Our �rst step toward the proof will be an appliation of Kempf's rationality theorem

2.1.10. For this, let T � GL(V) be a maximal torus. We may hoose a basis of V,

suh that T beomes the subgroup of diagonal matries. Then, we de�ne the pairing

(., .)�:X�
R

(T)�X�
R

(T) −→ R as in Setion 2.1 (The Instability Flag). Now, T := T �
Spe(C)

Spe(K) is a maximal torus in GL(V) �
Spe(C) Spe(K) with X�(T) = X�(T), and its

intersetion TG with G is a maximal torus in that group. The indued pairing (., .)�G on

X�
R

(TG) ful�lls the requirements of Theorem 2.1.10. If we assume that ση be unstable,

then there is an instability one parameter subgroup λ:Gm(K) −→ G whih de�nes a

weighted ag (0 ( V1 ( � � � ( Vs ( V, α0) in V := V 


C

K. The resulting paraboli

subgroup QG(ση) is de�ned over K, i.e., it omes from a paraboli subgroup QK(ση) of

SL(P)�U Spe(K). The paraboli subgroup QK(ση), in turn, orresponds to a point

Spe(K) −→ Par(SL(P)) = Par(GL(P))
2.2.1
∼= P/Qp,

for the appropriate onjugay lass p 2 P of paraboli subgroups of GL(V). This point

may be extended to a setion

U0

−→ P/Qp

over a non-empty open subset U0

� U. In fat, we may assume U0

to be big. This is

beause X and P/Qp are smooth projetive varieties, so that any rational map X 99K P/Qp

extends to a big open subset. As in the introdution, this de�nes a �ltration

0 ( A0

1 ( � � � ( A0

s ( A∨
|U0
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of A∨
|U0

by subbundles, and leads to a �ltration (A�

: 0 ( A1 ( � � � ( As ( A) of A by

saturated subsheaves. We de�ne the vetor α = (α1, ..., αs) by αi := α
0

s+1−i, i = 1, ..., s,

if α0 = (α01, ..., α
0

s). For the weighted �ltration (A�, α), we learly �nd

µ(A�, α;ϕ) < 0.

Thus, by (11), we infer that ε � ν(A�, α;ϕ) is a negative polynomial of degree exatly

dim(X) − 1. The following laim settles the theorem.

Claim. For the weighted �ltration (A�, α) onstruted above, the oeÆient of the

monomial of degree dim(X) − 1 in M(A�, α) is not positive.

We now explain the proof of this laim. Note that we obtain, in fat, an even stronger

rationality theorem. The group Qp is the stabilizer of a unique ag V�

: 0 ( V1 (

� � � ( Vs ( V, and the weighted �ltration (A�, α) de�nes a redution of the struture

group of P to Qp. If we start our arguments with a trivialization of the indued Qp-

bundle Q over the generi point η, then we get V
�

with Vi = Vi 
C K, i = 1, ..., s, as

the instability ag. One may use the weighted ag (V�, α0) to de�ne a one parameter

subgroup λ:C�

−→ G (whih, indeed, is an instability subgroup). Then, λ de�nes also

a ag W�

: 0 ( W1 ( � � � ( Wt ( W in W := Va,b,c, and the paraboli subgroup

QG(λ) � Q
GL(V)(λ) = Qp �xes this ag. Reall that we are given a redution of the

struture group of P|U0

to Q
GL(V)(λ) = Qp. Therefore, the agW

�

gives rise to a �ltration

0 ( B∨
1 ( � � � ( B∨

t ( A∨
|U0;a,b,c

by subbundles. De�ne

j0 := min{ j = 1, ..., t+ 1 | B∨
j ontains the image of σU }.

Let L0

� OX be the image of ϕ. Then, over a big open subset U00

� U0

, we have

L0

|U00

∼= OU00(−D) for an e�etive divisor D. Thus, ϕ|U00

:A|U00;a,b,c −→ OU00(−D) de�nes a

morphism

σU00

:U00

−→ P(A|U00;a,b,c)

with

σ�U00

(O
P(A|U00;a,b,c)

(1)) ∼= OU00(−D).

By our hoie of j0, σU00

fatorizes over P(Bj0|U00), and, again,

σ�U00

(O
P(Bj0 |U

00

)(1)) ∼= OU00(−D).

Now, the surjetive linear mapWj0 −→Wj0/Wj0−1 is, in fat, a morphism ofQp-modules.

Over a big open subset U000

� U00

, the image of

(B∨
j0|U000

/B∨
j0−1|U000

)
∨
� Bj0 |U000 −→ OU000(−D)

is of the form OU000(−(D|U000 + D0)) for some e�etive divisor D0

. Therefore, we get a

morphism

σ00:U000

−→ P((B∨
j0|U000

/B∨
j0−1|U000

)∨)
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with

σ00
�

(O
P((B∨

j0 |U000

/B∨
j0−1|U000

)∨)(1)) = OU000(−(D|U00 +D0)).

Now, let χ
�

be the harater of HG(λ) as in Proposition 2.1.9. By our strengthening of

the rationality properties, χ
�

omes from a harater of HG(λ) whih we denote again

by χ
�

. We may view χ
�

also as a harater of Q
GL(V)(λ). The given Q

GL(V)(λ)-bundle

Q|U000

� P|U000

and χ−1
�

de�ne a line bundle Lχ−1
�

, and Q|U000

and Wj0/Wj0−1
 Cχ−1
�

de�ne

a vetor bundle

eB∨ ∼= (B∨
j0 |U000

/B∨
j0−1|U000

)
 Lχ−1
�

over U000

, so that

σ00
�

(O
P(eB)

(1)) ∼= OU000(−(D|U00 +D0))
 L∨
χ−1
�

.

Now, Proposition 3.1.6 grants that the assumptions of Proposition 2.2.2 are satis�ed, so

that we onlude that

0 � deg

�

OU000(−(D|U00 +D0))
�

� deg(Lχ−1
�

).

By onstrution, χ−1
�

is just a positive multiple of lT(λ), so that also deg(LlT (λ)) � 0. Set

(γ01, ..., γ
0

s+1) :=

s∑

i=1

α0i � (rk(A
0

i) − r, ..., rk(A
0

i) − r︸ ︷︷ ︸
rk(A0

i
)�

, rk(A0

i), ..., rk(A
0

i)︸ ︷︷ ︸
(r−rk(A0

i
))�

).

Using Example 2.1.8, we �nd

deg(LlT (λ)) =

s+1∑

i=1

γ0i

�

deg(det(A0

i)) − deg(det(A0

i−1))
�

deg(As+1)=0
= −

s∑

i=1

(γ0i+1− γ
0

i) � deg(det(A
0

i))

= −

s∑

i=1

α0i � r � deg(A
0

i)

(1)
= −

s∑

i=1

αs+1−i � r � deg(As+1−i)

= −

s∑

i=1

αi � r � deg(Ai).

The last expression is the oeÆient of the monomial of degree dim(X) − 1 inM(A�, α),

so that the laim and hene the theorem is settled.

4 Construction of the Representation κ and Applications

Let (A, τ) be an honest singular G-bundle. It will be our main problem to haraterize

among all weighted �ltrations (A�, α) of A those whih are assoiated with a redution

of (A, τ) to a one parameter subgroup of G.
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4.1 Definition of κ and Elementary Properties

First, there exist a representation

eκ: SL(V) −→ GL(fW) and an SL(V)-equivariant em-

bedding

η: SL(V)/G →֒ fW,

by [4℄, 1.12 Proposition. The representation

eκ may be extended to a representation

κ: GL(V) −→ GL(W). By twisting the diret summands of κ by suitable powers of the

determinant | whih does not alter

eκ, we may assume that all weights of the ation of

C

� = C�

� idV be positive. Denote the resulting representation again by κ. The important

features of this onstrution are summarized in the following lemma. For g 2 GL(V), [g]

stands for the image of g �G in W.

Lemma 4.1.1. i) The group G has �nite index in

eG, the GL(V)-stabilizer of [e].

ii) For every g 2 GL(V), the point [g] is SL(V)-polystable.

iii) A point k 2 GL(V) � [e] \GL(V) � [e] is not SL(V)-semistable.

Proof. Ad i). We look at the isogeny SL(V) � C�

−→ GL(V), (h, z) 7−→ h � z. Note

that the SL(V)-orbit of [e] is, by onstrution, losed in W, and, in partiular, does not

ontain the origin. Sine we assume that all weights of the C

�

-ation be positive, the

SL(V)-orbit of [e] intersets the C�

-orbit of [e] only in �nitely many points. This implies

that G has �nite index in the (SL(V)� C�)-stabilizer of [e] and settles our laim.

Ad ii). Sine the SL(V)-orbit of [e] is losed in W, the ommutative diagram

GL(V)�W −−−→ W

(g�.�g−1,

?

?

y

g�)

?

?

y

g�

GL(V)�W −−−→ W

shows that the (g � SL(V) � g−1)-orbit of [g] is losed and does not ontain the origin.

Finally, SL(V) is normal in GL(V).

Ad iii). We write GL(V) � [e] = Spe(A). Sine all the points [g], g 2 GL(V), are

SL(V)-polystable, we get a dominant morphism

C

� ∼= GL(V)/ SL(V) −→ Spe(ASL(V)).

Thus, ASL(V)
� C[f] with f: GL(V)/ SL(V) −→ C, [g] 7−→ det(g) (the funtion f−1

is not

regular at 0 2 GL(V) � [e]). This shows that all elements in the losed set GL(V) � [e] \

GL(V) � [e] are nullforms.

Remark 4.1.2. These are the properties | alluded to in the introdution | whih our

onstrution shares, for example, with the ase of an adjoint group and the embedding

GL(g)/Aut(g) →֒ Hom(g
 g, g). Our theory relies on these properties.

If we are given a point [g] 2 W and a one parameter subgroup λ:C�

−→ g � eG �

g−1
, then [g] is a �xed point for the indued C

�

-ation and we have µ(λ, [g]) = 0.
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We will �rst establish a kind of onverse to this trivial observation and then extend it

to weighted �ltrations, thereby arriving at the neessary haraterization of weighted

�ltrations (A�, α) arising from redutions to one parameter subgroups as those for whih

µ(A�, α;ϕ) = 0. Here, ϕ is as in Example 3.1.3.

Suppose we are given a point [g] 2W and a one parameter subgroup λ:C�

−→ SL(V)

with µ(λ, [g]) = 0. Sine [g] is SL(V)-polystable, it follows that limz→∞ λ(z) � [g] = [g0] for

some [g0] 2 GL(V), and λ is a one parameter subgroup of the omponent of the identity of

the GL(V)-stabilizer of [g0], that is, of Gg0 := g0 �G �g0−1
. Therefore, Q

GL(V)(λ)\G
g0
is the

paraboli subgroup QGg0 (λ). By Example 2.1.3, there is an element u 2 Ru(QGL(V)(λ)),

suh that u � [g0] = [g]. As we have seen before, Q
GL(V)(λ)\G

g0
is the paraboli subgroup

QGg0 (λ). Observing that u �Q
GL(V)(λ) � u

−1 = Q
GL(V)(λ), we onlude

Proposition 4.1.3. If we are given a one parameter subgroup λ:C�

−→ SL(V) and

a point [g] 2W with µ(λ, [g]) = 0, then

Q
GL(V)(λ) \ g �G � g

−1 = Qg�G�g−1(λ0)

for some one parameter subgroup λ0 (= u �λ �u−1
in the above notation) of g �G �g−1

with Q
GL(V)(λ

0) = Q
GL(V)(λ). More preisely, λ and λ0 de�ne the same weighted ag

in V.

4.2 Characterization of Certain Weighted Filtrations

To simplify our arguments, we assume thatW = Va,b,c = Va1,b1,c1 � � � ��Van ,bn,cn (om-

pare Example 3.1.3). Let (A, τ) be an honest singular G-bundle, and let κ: GL(V) −→
GL(W) be the representation onstruted in the last setion. Over the open set U where

A is loally free, we have the redution

σ: U −→ Isom(V 
 OU,A
∨
|U)/G

(f. [22℄, Remark 3.3). Reall that P := Isom(V
OU,A
∨
|U) is the prinipal GL(V)-bundle

orresponding to A∨
|U and that σ and P −→ P/G de�ne over U the prinipal bundle

P(A, τ), i.e., σ enodes the rational prinipal G-bundle assoiated with the singular

prinipal G-bundle (A, τ). Using the representation κ, we get yet another desription,

namely σ gives rise to a setion

ϕU: U −→ ((A∨
|U)


a1)
�b1

� � � � � ((A∨
|U)


an)
�bn ∼= P(A, τ)κ

whih extends to a deoration

ϕ: (A
a1)
�b1

� � � � � (A
an)
�bn

−→ OX

of type (a, b, c). Let β be a redution of (A, τ) to the one parameter subgroup λ of G

and (A�

β, αβ) the assoiated weighted �ltration of A. Our �rst ontention is
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Lemma 4.2.1.

µ(A�

β, αβ;ϕ) = 0.

Proof. If we apply the onstrution desribed in Example 3.1.3, the resulting setion

ϕ0

|eU
:

eU −→ P
κ|eU

∼=W �

eU −→W,

is just x 7−→ [e], x 2 U, so that the assertion is an obvious onsequene of Formula (10).

Next, we ome to the onverse, i.e., to

Proposition 4.2.2. If (A�, α) is a weighted �ltration of A with µ(A�, α;ϕ) = 0, there

exists a redution β to a one parameter subgroup λ:C�

−→ G with

(A�, α) = (A�

β, αβ).

Proof. Let η be the generi point of X, K the residue �eld at η, and K an algebrai

losure of K. Over K, we may realize a situation as in Proposition 4.1.3. For this, let

P := P(A, τ) be the assoiated prinipal bundle. By applying the inverse of the proedure

desribed in the introdution, the weighted �ltration (A�, α) de�nes, over the big open

subset U0

� U where all the Ai are subbundles, i = 1, ..., s, a weighted �ltration (A0

�

U0

, α0)

of A∨
|U0

by subbundles, i.e., U0

is the maximal open subset where A, all the Ai and all

the quotients A/Ai, i = 1, ..., s, are loally free. Then, for a suitable paraboli subgroup

Q � GL(V), this �ltration de�nes a setion β:U0

−→ Isom(V 
 OU0 ,A∨
|U0

)/Q and, thus,

a Q-bundle Q � Isom(V 
 OU0,A∨
|U0

).

The group G ats on itself, on

eG, on SL(V), and on GL(V) by onjugation whih

provides us with the group shemes G(P), eG(P), SL(P), and GL(P) over U. Over Spe(K),

this yields the groups ρ
K

:G
K

� SL

K

, with G
K

:= G(P)�USpe(K) and SLK := SL(P)�U

Spe(K), as well as eρ
K

:

eG
K

� GL

K

, with

eG
K

:= eG(P)�U Spe(K) and GL

K

:= GL(P)�U

Spe(K). If we hoose, over a suitable �nite extension

eK of K, a trivialization P �U

Spe(eK) ∼= G �

Spe(C) Spe(eK), we get indued trivializations

eG
K

∼= eG �

Spe(C) Spe(K)

and GL

K

∼= GL(V) �
Spe(C) Spe(K), suh that

eρ
K

= eρ �
Spe(C) idSpe(K), eρ: eG � GL(V).

Likewise, we get an indued representation κ
K

: GL

K

−→ GL(W
K

), W
K

:= W 


C

K

∼=
Pκ�USpe(K). Under the identi�ation of Pκ�USpe(K) withWK

, ϕU and Spe(K) −→
η 2 U de�ne the point x

K

2W
K

. Then,

eG
K

is the GL

K

-stabilizer of x
K

, and the point x
K

is SL

K

-polystable. Next, the weighted �ltration (A0

�

U0

, α0) produes a weighted �ltration

(V
�

, α0) in V
K

:= V

C

K. This weighted �ltration an be obtained from a one parameter

subgroup λ
K

:Gm(K) −→ SL

K

, and we have

µκ
K

(λ
K

, x
K

) = 0,

by assumption. Proposition 4.1.3 may now be applied. This means that there is a one

parameter subgroup

eλ
K

:Gm(K) −→ eG
K

, suh that

Q
K

= Q
GL

K

(eλ
K

).
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Here, Q
K

:= Q �U0

Spe(K). Using the C-rational struture of G
K

, we �nd a maximal

torus TG
K

in G
K

of the form TG �Spe(C) Spe(K), TG � G a maximal torus. Thus, we

may �nd an element g 2 G
K

and a one parameter

eλ:C�

−→ G, suh that

g �QG
K

(eλ
K

) � g−1 = QG(eλ)�Spe(C) Spe(K),

whene

g �Q
K

� g−1 = Q
GL(V)(eλ)�Spe(C) Spe(K).

This shows already that we may assume Q = Q
GL(V)(eλ). Sine everything is de�ned over

a �nite extension of K, we have arrived at the following

Conlusion. There are a �nite Galois extension K0/K and a trivialization t:P �U

Spe(K0) ∼= G�
Spe(C) Spe(K

0), suh that the setion

Spe(K0)
β�U0

id

Spe(K0)
−→ (Isom(V 
 OU0,A∨

|U0

)/Q
GL(V)(eλ))�Spe(C) Spe(K

0)

∼= (GL(V)/Q
GL(V)(eλ))�Spe(C) Spe(K

0)

lies in (G/QG(eλ))�Spe(C) Spe(K
0).

Using the embedding G/QG(eλ) →֒ GL(V)/Q
GL(V)(eλ), we �nd an embedding

P/QG(eλ) →֒ Isom(V 
 OU0,A∨
|U0

)/Q
GL(V)(eλ).

We have just seen that β�U0

id

Spe(K0) lies in (P�USpe(K
0))/QG(eλ). But sine everything

is de�ned over K, we also must have that β�U0

id

Spe(K) lies in P/QG(eλ). This, of ourse,

shows that β fatorizes over P|U0/QG(eλ), and that implies the laim of the proposition.

5 Analysis of Semistability

5.1 Slope Semistability and Mumford Semistability of A

Let A be a torsion free sheaf on X and (A�, α) a weighted �ltration of A. Then, we set

L(A�, α) =

s∑

i=1

αi(rk(Ai) � deg(A) − rk(A) � deg(Ai))

= oeÆient of xdim(X)−1
in M(A�, α).

An honest singular G-bundle (A, τ) is said to be slope-(semi)stable, if for every one

parameter subgroup λ:C�

−→ G and every redution β of (A, τ) to λ, we have

L(A�

β, αβ) (�) 0.
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Then, one has the following impliations

(A, τ) is slope-stable =⇒ (A, τ) is stable

=⇒ (A, τ) is semistable

=⇒ (A, τ) is slope-semistable.

Proposition 5.1.1. If the honest singular G-bundle (A, τ) is slope-semistable, then

the sheaf A is Mumford-semistable.

Proof. This is proved like Proposition 3.13 in [19℄. But, sine we use other onventions

and [19℄ ontains some sign errors, we will review the proof here. Let B ( A be any non-

trivial saturated subsheaf. Set B0 := ker(A∨
−→ B∨). We have to show that deg(B) � 0.

Over U, we have the prinipal GL(V)-bundle R := Isom(V 
 OU,A
∨
|U), and, over the big

open subset U0

� U where B0

is a subbundle, it de�nes a setion

σ: U0

−→ R(G, α).

Here, G := Gr(V, i) is the Gra�mannian of i-dimensional quotients of V and α: GL(V)�

G −→ G is the usual ation. The determinant L of the universal quotient is very ample.

We have a anonial linearization α: GL(V)�L −→ L. Note that the pullbak of the line

bundle R(L, α) −→ R(G, α) is det(A∨
|U0

/B0

|U0

) whih has degree −deg(B0

|U0

) = −deg(B).

If σ(η) is semistable, then, by Proposition 2.2.2, −deg(B) � 0, and we are done.

Otherwise, set W∨ := H0(G,L). As in the proof of Theorem 3.1.5, we �nd a one

parameter subgroup

eλ:C�

−→ G, a subquotientW 0

ofW whih inherits an LG(eλ)-module

struture, and a setion

σ0:U00

−→ R|U00(P(W 0

∨

), α0),

suh that the pullbak of the line bundle R|U00(O
P(W0

∨
)
(1), α0) −→ R|U00(P(W 0

∨

), α0) is

det(B0

|U00

)∨(−D) for some e�etive divisor D. Here, α0: LG(eλ)�P(W
0

∨

) −→ P(W 0

∨

) and

α0: LG(eλ)�O
P(W0

∨
)(1) −→ O

P(W0

∨
)(1) are indued by the LG(eλ)-module struture of W 0

.

Moreover, there is a harater χ
�

of LG(eλ), suh that σ0(η) is semistable w.r.t. the given

linearization twisted by χ
�

. As before, one �nds

−deg(B) � deg(det(B0

|U00

)∨(−D)) � deg(Lχ−1
�

).

Again, one heks that deg(Lχ−1
�

) is a positive multiple of L(A�

β, αβ) for some redution

β to a one parameter subgroup of G. Our assumption, therefore, implies that deg(Lχ−1
�

)

is non-negative, and we are done.

5.2 Comparison with Semistability of the Associated Decorated

Sheaf

First, we reall from our paper [22℄ the de�nition of ε-(semi)stability of a pair (A, τ)

where ε 2 Q[x] is a positive polynomial of degree at most dim(X) − 1. For any s > 0,
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�rst de�ne for every d = (d1, � � � , ds) with
∑
idi = s!

ϕd:

s
O

i=1

(V 
A)
dii
−→

s
O

i=1

Sym

di(Symi(V 
A)) −→
s
O

i=1

Sym

di(Symi(V 
A))G −→ OX

where the �rst one is the standard map and the seond one the Reynolds operator. These

add to

ϕs
τ: ((V 
A)


s!)
�N

∑
d ϕd

−→ OX.

For s � 0, ϕs
τ will be a non-zero homomorphism whih de�nes τ uniquely. For any

weighted �ltration (A�, α), we de�ne

µ(A�, α, τ) :=
1

s!
� µ(A�, α;ϕs

τ).

It is easy to see that this is well de�ned. Then, (A, τ) is alled ε-(semi)stable, if for

every weighted �ltration (A�, α) of A, the inequality

M(A�, α) + ε � µ(A�, α, τ)(�)0

holds.

Remark 5.2.1. If (A, τ) is ε-semistable, then one has

µ(B) � µ(A) + ε0 � (r− 1),

for every saturated subsheaf 0 ( B ( A ([22℄, (3.20)).

As we have desribed in Setion 4.2, an honest singular prinipal G-bundle (A, τ)

de�nes an assoiated torsion free sheaf (A, ϕ) with a deoration of type (a, b, c). Some

important properties of the semistability onept are summarized in

Proposition 5.2.2. Let ε 2 Q[x] be a positive polynomial of degree exatly dim(X)−1.

Then the following properties hold true.

1. An honest singular G-bundle (A, τ) is (semi)stable, if and only if the assoiated

deorated sheaf (A, ϕ) is ε-(semi)stable (as de�ned in Setion 3).

2. If (A, τ) is a (semi)stable honest singular G-bundle, then it is ε-(semi)stable

(in the sense of [22℄).

Proof. Ad 1. By the Lemma 4.2.1, the ε-(semi)stability of (A, ϕ) learly implies the

(semi)stability of (A, τ). If (A, τ) is (semi)stable, Proposition 5.1.1 shows that A is a

Mumford-semistable torsion free sheaf. Therefore, for every weighted �ltration (A�, α),

the number L(A�, α) is non-negative. Thus, if we have µ(A�, α;ϕ) > 0, thenM(A�, α)+

ε � ν(A�, α;ϕ) � 0. On the other hand, if µ(A�, α;ϕ) = 0, then we may apply Proposi-

tion 4.2.2 in order to see that the onditionM(A�, α)(�)0 follows from the (semi)stability

of (A, τ).
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Ad 2. We use the rational map

P(Hom(V, V)) 99K P(Hom(V, V))//G −→ P(Hom(V, V))// eG 99K Va,b,c//C
�

whih is de�ned on P(Isom(V, V)), the last map oming from GL(V)/ eG � Va,b,c \ {0}.

It extends over a big open subset U � P(Hom(V, V)), and the pullbak of any ample

line bundle L on the weighted projetive spae Va,b,c//C
�

extends to an (SL(V) � eG)-

linearized ample line bundle O
P(Hom(V,V))(l). The SL(V)-invariant global setions of L

de�ne (SL(V) � eG)-invariant global setions of O
P(Hom(V,V))(l) and, thus, G-invariant

global setions of N
l0
, with N the polarization on P(Hom(V, V))//G indued by the

G-linearized ample line bundle O
P(Hom(V,V))(1). This shows that there is a �xed positive

rational number η, suh that

µN(λ, [t]) � η � µL(λ, f([t])), 8 λ:C�

−→ SL(V), t 2 Isom(V, V),

f:P(Hom(V, V))//G 99K Va,b,c//C
�

being the rational map de�ned before. By the same

token, we may �nd a positive rational number η0, suh that

M(A�, α) + ε � µ(A�, α; τ) � M(A�, α) + η0 � ε � ν(A�, α;ϕ).

Sine (A, ϕ) is also (η0 � ε)-(semi)stable, by 1., we are done.

5.3 Ramanathan’s Definition of Semistability

Here, we assume that G be semisimple. A rational prinipal G-bundle over X is a pair

(U,P) whih onsists of a big open subset U � X and a prinipal G-bundle P over U. A

rational prinipal G-bundle (U,P) is alled Ramanathan-(semi)stable, if for every big

open subset U0

� U, every paraboli subgroup Q, every antidominant harater χ of Q,

and every redution β:U0

−→ P|U0/Q, one has deg(Lχ) � 0. Here, Lχ is the line bundle

on U0

assoiated with β and the G-linearized (ample) line bundle on G/Q assigned to

the Q-bundle G −→ G/Q via χ. Sine every antidominant harater is indued | by

the proedure outlined in Example 2.1.8 | by a one parameter subgroup λ:C�

−→ G,

we see

Proposition 5.3.1. An honest singular prinipal G-bundle (A, τ) is slope (semi)sta-

ble, if and only the assoiated rational prinipal bundle (U,P(A, τ)) is Ramanathan-

(semi)stable.

Remark 5.3.2. For general redutive groups, the antidominant haraters orrespond to

one parameter subgroups of [G,G].

6 Semistable Reduction

In this setion, we will present the proof of the main theorem as stated in the introdu-

tion. The strategy of proof is analogous to the one used in [22℄ for adjoint groups and

the adjoint representation.
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6.1 Singular fG-bundles

Let

eG be the group de�ned in Setion 4.1 and

eρ: eG −→ GL(V) its natural inlusion into

GL(V). Sine eρ( eG0) = ρ(G) � SL(V), Proposition 1.15 in Chapter 1.4 of [17℄ grants that

we may develop a theory of singular prinipal

eG-bundles as well. Again, we have the

following alternative:

Lemma 6.1.1. Let (A, eτ) be a singular prinipal eG-bundle, U the maximal open subset

where A is loally free, and

eσ:U −→ Hom(V
OU,A
∨
|U)//

eG the setion de�ned by

eτ|U.

Then,

eσ is entirely ontained in either Isom(V 
 OU,A
∨
|U)/

eG or its omplement. In

the former ase, we all (A, eτ) an honest singular prinipal

eG-bundle.

Proof. Let h: Hom(V 
OU,A
∨
|U) −→ U be the Hom-bundle. Then, there is the universal

homomorphism f:V 
 O
Hom(V
OU,A∨

|U
) −→ h�(A∨

|U). Choosing a trivialization for det(A)

and a basis for V, det(f) beomes an SL(V)-invariant global setion of O
Hom(V
OU,A∨

|U
).

Sine the image of

eG under the determinant homomorphism is a �nite, whene yli,

subgroup of C

�

, some power of this funtion is, in fat,

eG-invariant, and, thus, de�nes

a funtion d 2 Γ(Hom(V 
 OU,A
∨
|U)//G,OHom(V
OU,A∨

|U
)//G). Then,

eσ�(d) is a onstant

funtion, beause U is a big open subset of X. This implies the laim.

Next, let S be any sheme and (AS, τS) a family of singular prinipal G-bundles. We

obtain the assoiated family (AS, eτS) of singular prinipal eG-bundles with

eτS: Sym
�(V 
AS)

eG
� Sym

�(V 
AS)
G τS
−→ OS�X.

Remark 6.1.2. Note that Sym

�(V 
AS)
eG
is the algebra of invariants in Sym

�(V 
AS)
G

for the indued ation of the �nite group

eG/G.

Lemma 6.1.3. i) A singular prinipal G-bundle (A, τ) is honest, if and only if the

assoiated singular

eG-bundle (A, eτ) is honest.

ii) For every positive polynomial ε 2 Q[x] of degree at most dim(X)−1, a singular

prinipal G-bundle (A, τ) is ε-(semi)stable, if and only if the assoiated singular

eG-

bundle (A, eτ) is ε-(semi)stable.

Proof. The �rst assertion is obvious. Sine P(Hom(V, V))// eG is the quotient of P(Hom(V,

V))//G by the �nite group

eG/G, Lemma 2.1.1 implies

µ(A�, α; eτ) = µ(A�, α; τ)

for every weighted �ltration (A�, α) of A.



Semistable Singular Prinipal Bundles 29

6.2 The Proof of the Main Theorem

For the rest, we use the representation κ: GL(V) −→ GL(W), with W = Va,b,c for ap-

propriate tuples a, b, and c, as onstruted in Setion 4.1. Moreover, we �x a Hilbert

polynomial P and a positive polynomial ε 2 Q[x] of degree exatly dim(X) − 1. Then,

the set of torsion free sheaves A with Hilbert polynomial P(A) = P for whih there

exists either an ε-semistable singular prinipal

eG-bundle (A, eτ) or an ε-semistable tor-

sion free sheaf (A, ϕ) with a deoration of type (a, b, c) is bounded. This follows from

Maruyama's boundedness result ([13℄, Theorem 3.3.7) and Remarks 3.1.4, ii), and 5.2.1.

Therefore, we may hoose an integer n � 0, suh that A(n) is globally generated and

Hi(A(n)) = 0, i > 0, for every suh sheaf A, and suh that all the neessary GIT-

onstrutions may be performed relative to the quasi-projetive quot-sheme Q0
. Here,

Q0
parameterizes quotients q: Y 
 OX(−n) −→ A, suh that A is a torsion free sheaf

with Hilbert polynomial P and H0(q(n)): Y −→ H0(A(n)) is an isomorphism, Y being a

omplex vetor spae of dimension P(n). In the following, the quotient maps involved,

suh as qS: Y
π
�

XOX(−n) −→ AS, will remain una�eted by the onstrutions whih will

be arried out, whene they won't be mentioned.

Now, as in Setion 5.1 of [22℄, we may onstrut the parameter spaes Y(G) and Y( eG)

over Q0
for singular prinipal G-bundles and singular prinipal

eG-bundles, respetively.

Let us briey reall the onstrution for G. For large s, we start with

Y = Q0
�

s
M

i=1

Hom

�

Sym

i(V 
 Y), H0(OX(in))
�

.

Note that, over Y� X, there are universal homomorphisms

eϕi : Symi(V 
 Y)
 OY�X → H0(OX(in))
 OY�X, i = 1, ..., s.

Let ϕi = ev Æ

eϕi
be the omposition of

eϕi
with the evaluation map ev:H0(OX(in)) 


OY�X −→ π�XOX(in), i = 1, ..., s. We twist ϕi
by idπ�

X
OX(−in) and put the resulting maps

together to the homomorphism

ϕ:VY :=
s
M

i=1

Sym

i(V 
 Y 
 π�XOX(−n)) −→ OY�X.

Next, ϕ yields a homomorphism of OY�X-algebras

eτY: Sym
�(VY) −→ OY�X.

On the other hand, there is a surjetive homomorphism

β: Sym�(VY) −→ Sym

�(V 
 π�AQ0)G

of graded algebras, where the left hand algebra is graded by assigning the weight i to

the elements in Sym

i(V 
 Y 
 π�XOX(−n)). Here, π:Y � X −→ Q0
� X is the natural
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projetion, and AQ0
is the universal quotient on Q0

� X. The parameter spae Y(G) is

de�ned by the ondition that

eτY fatorize over β, i.e., setting AY(G) := (π�AQ0)|Y(G)�X,

there be a homomorphism

τY(G): Sym
�(V 
AY(G))

G
−→ OY(G)�X

with

eτY|Y(G)�X = τY(G)Æβ. Formally,Y(G) is de�ned as the sheme theoreti intersetion

of the losed subshemes

Yd :=
{
y 2 Y | eτd

Y|{y}�X
: kerβd

|{y}�X −→ OX is trivial

}
, d � 0.

The family (AY(G), τY(G)) is the universal family of singular prinipal G-bundles pa-

rameterized by Y(G). Similarly, we obtain Y( eG).

The homomorphism

Sym

�(V 
AY(G))
eG
� Sym

�(V 
AY(G))
G τY(G)

−→ OY(G)�X

leads, by the universal property of Y( eG), to a GL(Y)-equivariant morphism

Y(G)
s

−−−→ Y( eG)
?

?

y

?

?

y

Q0 Q0.

There is the indued ommutative diagram

Y(G)//C�

s
−−−→ Y( eG)//C�

?

?

y

?

?

y

Q0 Q0.

Now, Y(G)//C�

−→ Q0
is a proper morphism, so that the last diagram implies that s

is a proper morphism, too. There are the GL(Y)-invariant open subshemes Yh(G) and

Yh( eG), parameterizing the honest singular G- and eG-bundles, respetively. Note that

sh := s|Yh(G) is quasi-�nite and that s−1(Yh( eG)) = Yh(G), by Lemma 6.1.3, i). Thus, we

also get a �nite morphism

sh:Yh(G)//C�

−→ Yh( eG)//C�.

Finally, let (A, eτS) be a family of honest singular prinipal

eG-bundles parameterized by

S. Let U
lf

� S � X be the maximal open subset where AS is loally free. Note that

U
lf

\ {s}�X is the maximal open subset where AS|{s}�X is loally free ([13℄, Lemma 2.1.7).

Then, over U
lf

, we have the setion

eσ:U
lf

−→ Isom(V 
 OU
lf

,A∨
S|U

lf

)/ eG
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indued by

eτS|U
lf

. As in Setion 4.2, using the representation κ, the setion eσ gives rise

to a setion

σ0:U
lf

−→ A∨
S|U

lf

;a,b,c

or, dually,

ϕU
lf

:AS|U
lf

;a,b,c −→ OU
lf

.

This yields

ϕS:AS;a,b,c −→ j
�

�

AS|U
lf

;a,b,c

� j
�

(ϕU
lf

)
−→ j

�

(OU
lf

) = OS�X,

j:U
lf

−→ S� X being the inlusion. Aording to Maruyama ([16℄, bottom of page 112)

the equality j
�

(OU
lf

) = OS�X is seen as follows: By [10℄, Theorem (5.10.5) | applied to

S � X and Z := (S � X) \ U
lf

(whih is stable under speialization [13℄, Lemma 2.1.7)

|, one has to show that infx2Zdepth(OS�X,x) � 2. Sine X is smooth, the morphism

πS: S� X −→ X is smooth. Thus, by [11℄, Proposition (17.5.8),

dim(OS�X,x) − depth(OS�X,x) = dim(OS,s) − depth(OS,s),

for every point x 2 S� X and s := πS(x). This implies

depth(OS�X,x) � dim(OS�X,x) − dim(OS,s) = dim(Oπ−1
S (s),x). (12)

Sine for any point x 2 π−1
S (s), one has dimOπ−1

S
(s),x = odimπ−1

S
(s)({x}), we derive

depth(OS�X,x) � 2 for every point x 2 Z from the fat that odimπ−1
S

(s)(Z \ π
−1
S (s)) � 2

and (12).

Denote by Wa,b,c −→ Q0
the parameter spae for torsion free sheaves (A, ϕ) with a

deoration of type (a, b, c). The above onstrution then leads to a GL(Y)-equivariant

injetive morphism

Yh( eG)
t

−−−→ Wa,b,c
?

?

y

?

?

y

Q0 Q0.

Note that | on losed points | the morphism t Æ sh is just the assignment whih

assoiates to an honest singular prinipal G-bundle (A, τ) the orresponding torsion free

sheaf (A, ϕ) with a deoration of type (a, b, c) that had been used in Setion 4.2. In

the following, Wε−ss
a,b,c stands for the open subset whih parameterizes the ε-semistable

torsion free sheaves with a deoration of type (a, b, c). We will prove

Theorem 6.2.1. The restrited morphism

t0 := t|t−1(Wε−ss

a,b,c)
: t−1

�

Wε−ss
a,b,c

�

−→ Wε−ss
a,b,c

is proper, whene �nite.

Remark 6.2.2. Note that, by Proposition 5.2.2 and Lemma 6.1.3, ii), (t Æ sh)−1(Wε−ss
a,b,c)

is ontained in the lous of ε-semistable singular G-bundles.
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This theorem implies that t−1(Wε−ss
a,b,c) admits a projetive GL(Y)-quotient, or, equiva-

lently, that (t−1(Wε−ss
a,b,c))//C

�

admits a projetive SL(Y)-quotient. Here, one uses Lemma

5.1 of [20℄. By the �niteness of sh and the same lemma, this implies that

sh
−1

�

�

t−1(Wε−ss
a,b,c)

�

//C�

�

admits a projetive SL(Y)-quotient, too. But, by Proposition 5.2.2, the latter set is just

(Yh,ss(G))//C�

, Yh,ss(G) being the open subset of semistable honest singular G-bundles.

Therefore, Yh,ss(G) admits a projetive GL(Y)-quotient, and that onludes the proof of

the main theorem.

Proof of Theorem 6.2.1. Let I � Wε−ss
a,b,c be the sheme theoreti image of t−1(Wε−ss

a,b,c)

under t. Our �rst ontention is

Claim. The point set underlying I is just the set theoreti image of t−1(Wε−ss
a,b,c)

under t.

The laim is seen as follows. Let J be the set theoreti image. This is a onstrutible

subset of Wa,b,c. As suh, it ontains an open subset U of its losure, whih is the losed

subset underlying I. Now, suppose w 2 I is a losed point. By what we have just

observed, we may �nd a smooth aÆne urve C with a �xed point � 2 C and a map

f:C −→ I, suh that f(C \ {�}) � U � J and f(�) = w. Let (AC, ϕC) be the pullbak of

the universal family on Wa,b,c� X to C � X and U
lf

� C � X the maximal open subset

over whih AC is loally free. We then have a setion

σ0:U
lf

−→ A∨
C|U

lf

;a,b,c.

The vetor bundle A∨
C|U

lf

and the GL(V)-varieties GL(V)/ eG = GL(V) � [e] →֒ W and

GL(V) � [e] →֒W de�ne a loally losed subsheme S � A∨
C|U

lf

;a,b,c and a losed subsheme

S →֒ A∨
C|U

lf

;a,b,c. By onstrution, the image of U
lf

\(C\{�})�X under σ0 lies in S, whene

σ0(U
lf

) lies in S. Now, Lemma 4.1.1, iii), and Theorem 3.1.5 imply that there is also a

non-empty open subset U0

� {�}�X, suh that σ0(U0) � S. Thus, we have found an open

subset U0

� U
lf

whih is big in C� X, suh that σ := σ0|U0

fatorizes over S. The sheme

S is anonially isomorphi to Isom(V 
 OU0,A∨
C|U0

)/ eG, i.e., σ de�nes

τ0: Sym�(V 
AC|U0)
eG
−→ OU0

whih gives

eτC: Sym
�(V 
AC)

eG
� j

�

�

Sym

�(V 
AC|U0)
eG
�

j
�

(τ0)
−→ j

�

(OU0) = OC�X.

By Lemma 6.1.1, the singular prinipal bundle (AC|{�}�X, eτC|{�}�X) must be an honest one.

Therefore, w is the image of the orresponding point in Yh( eG), and this implies the

laim.
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Next, let (AI, ϕI) be the restrition of the universal family on Wa,b,c�X to I�X. As

usual, we let U
lf

be the open subset of I�X where AI is loally free. As above, A
∨
I|U

lf

and

GL(V)/ eG � W de�ne a subsheme S � A∨
I|U

lf

:a,b,c, and the setion σ0:U
lf

−→ A∨
I|U

lf

:a,b,c

de�ned by ϕI|A∨
I|U

lf

:a,b,c
fatorizes over S, so that we �nd, as before, a setion

σ:U
lf

−→ Isom(V 
 OU
lf

,A∨
I|U

lf

)/ eG

whih leads to a homomorphism

eτI: Sym
�(V 
AI)

eG
−→ OI�X.

The family (AI, eτY) de�nes a GL(Y)-equivariant morphism u: I −→ t−1(Wε−ss
a,b,c) with

t0 Æ u = idI, and this is even stronger than the assertion of the theorem.

Remark 6.2.3. The onstrution outlined above may be used to replae the onstrution

given in [22℄. However, the onstrution in [22℄ works also on a wide lass of singular

varieties, as shown in [3℄, when ignoring the ondition \det(A) ∼= OX".
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