ISSN 1472-2739 (on-line) 1472-2747 (printed) 273

Algebraic & Geometric Topology Volume 4 (2004) 273–296 \mathcal{A} lgebraic & Geometric Topology
Volume 4 (2004) 273–296
Published: 25 April 2004

A lower bound to the action dimension of a group

Sung Yil Yoon

Abstract The action dimension of a discrete group Γ , actdim(Γ), is defined to be the smallest integer m such that Γ admits a properly discontinuous action on a contractible m–manifold. If no such m exists, we define $actdim(\Gamma) \equiv \infty$. Bestvina, Kapovich, and Kleiner used Van Kampen's theory of embedding obstruction to provide a lower bound to the action dimension of a group. In this article, another lower bound to the action dimension of a group is obtained by extending their work, and the action dimensions of the fundamental groups of certain manifolds are found by computing this new lower bound.

AMS Classification 20F65; 57M60

Keywords Fundamental group, contractible manifold, action dimension, embedding obstruction

1 Introduction

Van Kampen constructed an m -complex that cannot be embedded into \mathbb{R}^{2m} [\[8\]](#page-23-0). A more modern approach to Van Kampen's theory of embedding obstruction uses co/homology theory. To see the main idea of this co/homology theoretic approach, let K be a simplicial complex and $|K|$ denote its geometric realization. Define the deleted product

$$
|\tilde{K}| \equiv \{(x, y) \in |K| \times |K| \mid x \neq y\}
$$

such that \mathbb{Z}_2 acts on $|\tilde{K}|$ by exchanging factors. Observe that there exists a two-fold covering $|K| \to |K|/\mathbb{Z}_2$ with the following classifying map:

Now let $\omega^m \in H^m(\mathbb{R}P^\infty;\mathbb{Z}_2)$ be the nonzero class. If $\phi^*(w^m) \neq 0$ then $|K|$ cannot be embedded into \mathbb{R}^m . That is, there is $\Sigma^m \in H_m(|\tilde{K}|/\mathbb{Z}_2;\mathbb{Z}_2)$ such that $\langle \phi^*(w^m), \Sigma \rangle \neq 0$.

A similar idea was used to obtain a lower bound to the action dimension of a discrete group Γ [\[2\]](#page-23-1). Specifically, the *obstructor dimension* of a discrete group Γ, *obdim*(Γ), was defined by considering an *m*-*obstructor K* and a *proper*, Lipschitz, expanding map

$$
f
$$
: $cone(K)^{(0)} \to \Gamma$.

And it was shown that

 $obdim(\Gamma) \leq actdim(\Gamma).$

See [\[2\]](#page-23-1) for details. An advantage of considering ω bdim(Γ) becomes clear when Γ has well-defined boundary $\partial \Gamma$, for example, when Γ is $CAT(0)$ or torsion free hyperbolic. In these cases, if an m –obstructor K is contained in $\partial\Gamma$ then $m + 2 \leq \text{obdim}(\Gamma).$

If Γ acts on a contractible m–manifold W properly discontinuously and cocompactly, then it is easy to see that $\operatorname{actdim}(\Gamma) = m$. For example, let M be a Davis manifold. That is, M is a closed, aspherical, four-dimensional manifold whose universal cover \tilde{M} is not homeomorphic to \mathbb{R}^{4} . We know that $\operatorname{actdim}(\pi_1(M)) = 4$. However, it is not easy to see that $\operatorname{obdim}(\pi_1(M)) = 4$. The goal of this article is to generalize the definitions of obstructor and obstructor dimension. To do so, we define proper obstructor (Definition [2.5\)](#page-4-0) and proper obstructor dimension (Definition [5.2.](#page-17-0)) The main result is the following.

Main Theorem The proper obstructor dimension of $\Gamma \leq \operatorname{actdim}(\Gamma)$.

As applications we will answer the following problems:

- Suppose W is a closed aspherical manifold and \tilde{W} is its universal cover so that $\pi_1(W)$ acts on \tilde{W} properly discontinuously and cocompactly. We show that \tilde{W} in this case is indeed an m–proper obstructor and $pobdim(\pi_1(W)) = m$.
- Suppose W_i is a compact aspherical m_i -manifold with all boundary components aspherical and incompressible, $i = 1, ..., d$. (Recall that a boundary component N of a manifold W is called *incompressible* if $i_*: \pi_i(N) \to \pi_i(W)$ is injective for $j \geq 1$.) Also assume that for each $i, 1 \leq i \leq d$, there is a component of ∂W_i , call it N_i , so that $|\pi_1(W_i):\pi_1(N_i)| > 2$. Let $G = \pi_1(W_1) \times ... \times \pi_1(W_d)$. Then

$$
actdim(G) = m_1 + \dots + m_d.
$$

The organization of this article is as follows. In Section [2,](#page-2-0) we define proper obstructor. The coarse Alexander duality theorem by Kapovich and Kleiner [\[5\]](#page-23-2), is used to construct the first main example of proper obstructor in Section [3.](#page-6-0) Several examples of proper obstructors are constructed in Section [4.](#page-11-0) Finally, the main theorem is proved and the above problems are considered in Sections [5.](#page-17-1)

2 Proper obstructor

To work in the PL–category we define simplicial deleted product

$$
\tilde{K} \equiv \{ \sigma \times \tau \in K \times K \mid \sigma \cap \tau = \emptyset \}
$$

such that \mathbb{Z}_2 acts on \tilde{K} by exchanging factors. It is known that $|\tilde{K}|/\mathbb{Z}_2$ ($|\tilde{K}|$) is a deformation retract of \tilde{K}/\mathbb{Z}_2 (\tilde{K}) , see [\[7,](#page-23-3) Lemma 2.1]. Therefore, WLOG, we can use $H_m(\tilde{K}/\mathbb{Z}_2;\mathbb{Z}_2)$ instead of $H_m(|\tilde{K}|/\mathbb{Z}_2;\mathbb{Z}_2)$.

Throughout the paper, all homology groups are taken with \mathbb{Z}_2 -coefficients unless specified otherwise.

To define proper obstructor, we need to consider several definitions and preliminary facts.

Definition 2.1 A proper map $h: A \rightarrow B$ between proper metric spaces is uniformly proper if there is a proper function $\phi: [0,\infty) \to [0,\infty)$ such that

$$
d_B(h(x), h(y)) \ge \phi(d_A(x, y))
$$

for all $x, y \in A$. (Recall that a metric space is said to be *proper* if any closed metric ball is compact, and a map is said to be proper if the preimages of compact sets are compact.)

Let W be a contractible m–manifold and define

$$
W_0 \equiv \{(x, y) \in W \times W \mid x \neq y\}.
$$

Consider a uniformly proper map $\beta: Y \to W$ where Y is a simplicial complex and W is a contractible manifold. Since β is uniformly proper, we can choose $r > 0$ such that $\beta(a) \neq \beta(b)$ if $d_Y(a, b) > r$. Note that β induces an equivariant map:

$$
\bar{\beta} \colon \left\{ (y, y') \in Y \times Y \mid d_Y(y, y') > r \right\} \to W_0
$$

As we work in the PL–category we make the following definition.

Definition 2.2 If $K \subset Y$ is a subcomplex and r is a positive integer then we define the *combinatorial* r-tubular neighborhood of K, denoted by $N_r(K)$, to be r-fold iterated closed star neighborhood of K.

Recall that when Y is a simplicial complex, $|Y| \times |Y|$ can be triangulated so that each cell $\sigma \times \tau$ is a subcomplex. Let $d: Y \to Y^2$ be the diagonal map, $d(\sigma) = (\sigma, \sigma)$, where Y^2 is triangulated so that $d(Y)$ is a subcomplex. Define

$$
Y_r \equiv Cls(Y^2 - N_r(d(Y))).
$$

Note that a uniformly proper map $\beta: Y \to W^m$ induces an equivariant map $\bar{\beta}$: $Y_r \to W_0 \simeq S^{m-1}$ for some $r > 0$.

Definition 2.3 (Essential \mathbb{Z}_2 −m−cycle) An essential \mathbb{Z}_2 −m−cycle is a pair (Σ^m, a) satisfying the following conditions:

- (i) $\tilde{\Sigma}^m$ is a finite simplicial complex such that $|\tilde{\Sigma}^m|$ is a union of m–simplices and every $(m-1)$ –simplex is the face of an even number of m–simplices.
- (ii) $a: \tilde{\Sigma}^m \to \tilde{\Sigma}^m$ is a free involution.
- (iii) There is an equivariant map $\varphi: \tilde{\Sigma}^m \to S^m$ with $deg(\varphi) = 1 (mod 2)$.

Some remarks are in order.

- (1) We recall how to find $deg(\varphi)$. Choose a simplex s of S^m and let f be a simplicial approximation to φ . Then $deg(\varphi)$ is the number of m– simplices of $\tilde{\Sigma}^m$ mapped into s by f.
- (2) Let $\tilde{\sigma}$ be the sum of all m–simplices of $\tilde{\Sigma}^m$. Condition (i) of Definition [2.3](#page-3-0) implies that $[\tilde{\sigma}] \in H_m(\tilde{\Sigma}^m)$. We call $[\tilde{\sigma}]$ the fundamental class of $\tilde{\Sigma}^m$.
- (3) Let $\tilde{\Sigma}^m/\mathbb{Z}_2 \equiv \Sigma^m$ and consider a two-fold covering $q: \tilde{\Sigma}^m \to \Sigma^m$. As φ is equivariant it induces $\bar{\varphi} \colon \Sigma^m \to \mathbb{R}P^m$. Let $deg_2(\varphi)$ denote $deg(\varphi)(mod 2)$. Note that $deg_2(\varphi) = \langle \bar{\varphi}^*(w^m), q\tilde{\sigma} \rangle$ where $w^m \in H^m(\mathbb{R}P^m; \mathbb{Z}_2)$ is the nonzero element. If $\varphi: \ \tilde{\Sigma}^m \to S^m$ is an equivariant map then $deg_2(\varphi) =$ 1. To see this, we prove the following proposition.

Proposition 2.4 Suppose a map $\varphi: \tilde{\Sigma}^m \to S^m$ is equivariant. Then

$$
deg_2(\varphi)=1.
$$

Proof Consider the classifying map and the commutative diagram for a twofold covering $q: \ \tilde{\Sigma}^m \to \Sigma^m$:

$$
\begin{array}{ccc}\n\tilde{\Sigma}^m & \xrightarrow{\phi} & S^{\infty} \\
q & & & p \\
\Sigma^m & \xrightarrow{\bar{\phi}} & \mathbb{R}P^{\infty} \\
\tilde{\Sigma}^m & \xrightarrow{\varphi} & S^m & \xrightarrow{i} & S\n\end{array}
$$

We also have:

$$
\begin{array}{ccc}\n\tilde{\Sigma}^m & \xrightarrow{\varphi} & S^m & \xrightarrow{i} & S^{\infty} \\
q \Big\downarrow & & p \Big\downarrow & & p \Big\downarrow \\
\Sigma^m & \xrightarrow{\bar{\varphi}} & \mathbb{R}P^m & \xrightarrow{i} & \mathbb{R}P^{\infty}\n\end{array}
$$

Because $S^{\infty} \to \mathbb{R}P^{\infty}$ is the classifying covering, $i \circ \varphi \simeq \varphi$ and $i \circ \bar{\varphi} \simeq \bar{\varphi}$. Observe that

$$
deg_2(\varphi) = \langle \bar{\varphi}^* w^m, q\tilde{\sigma} \rangle = \langle (i \circ \bar{\varphi})^* w^m_{\infty}, q\tilde{\sigma} \rangle
$$

where $0 \neq w^m_{\infty} \in H^m(\mathbb{R}P^{\infty})$. But, since $i \circ \bar{\varphi} \simeq \bar{\phi}$,

$$
\langle (i \circ \bar{\varphi})^* w_\infty^m, q \tilde{\sigma} \rangle = \langle \bar{\phi}^* w_\infty^m, q \tilde{\sigma} \rangle = deg_2(\phi).
$$

Now we modify the definition of obstructor.

Definition 2.5 (Proper obstructor) Let T be a contractible¹ simplicial complex. Recall that $T_r \equiv Cls(T^2 - N_r(d(T)))$ where $N_r(d(T))$ denotes the rtubular neighborhood of the image of the diagonal map $d: T \to T^2$. Let m be the largest integer such that for any $r > 0$, there exists an essential \mathbb{Z}_2 -m-cycle $(\tilde{\Sigma}^m, a)$ and a \mathbb{Z}_2 -equivariant map $f: \tilde{\Sigma}^m \to T_r$. If such m exists then T is called an m -proper obstructor.

The first example of proper obstructor is given by the following proposition.

Proposition 2.6 Suppose that M is a k-dimensional closed aspherical manifold where $k > 1$ and X is the universal cover of M. Suppose also that X has a triangulation so that X is a metric simplicial complex and a group $G = \pi_1(M)$ acts on X properly discontinuously, cocompactly, simplicially, and freely by isometries. Then X^k is a $(k-1)$ -proper obstructor.

We prove Proposition [2.6](#page-4-1) in Section [3.](#page-6-0) The key ideas are the following:

¹Contractibility is necessary for Proposition 5.2

- (1) Since G acts on X properly discontinuously, cocompactly, simplicially, and freely by isometries, X is uniformly contractible. Recall that a metric space Y is uniformly contractible if for any $r > 0$, there exists $R > r$ such that $B_r(y)$ is contractible in $B_R(y)$ for any $y \in Y$.
- (2) For any $R > 0$, there exists $R' > R$ so that the inclusion induced map

$$
i_*\colon\thinspace \tilde{H}_j(X_{R'})\to \tilde{H}_j(X_R)
$$

is trivial for $j \neq k - 1$ and $\mathbb{Z}_2 \cong i_*(\tilde{H}_{k-1}(X_{R'})) \leq \tilde{H}_{k-1}(X_R)$. (See Lemma [3.6.](#page-8-0))

(3) We recall the definition of Δ –complex and use it to complete the proof as sketched below.

Definition 2.7 A Δ –complex is a quotient space of a collection of disjoint simplices of various dimensions, obtained by identifying some of their faces by the canonical linear homeomorphisms that preserve the ordering of vertices.

Suppose (Σ^m, a) is an essential $\mathbb{Z}_2 - m$ -cycle with a \mathbb{Z}_2 -equivariant map $f: (\tilde{\Sigma}^m, a) \to T_r$. Let

$$
|\tilde{\Sigma}^m|=\cup_{i=1}^n \Delta^m_i
$$

(union of n –copies of m –simplices, use subscripts to denote different copies of m–simplices) and

$$
f_i \equiv f|_{\Delta_i^m}
$$

Then condition (i) of Definition [2.3](#page-3-0) implies that $\sum_{i=1}^{n} f_i$ is an m -cycle of T_r (over \mathbb{Z}_2). That is, an essential \mathbb{Z}_2 -m-cycle (Σ^m, a) with a \mathbb{Z}_2 -equivariant map $f: (\Sigma^m, a) \to T_r$ can be considered as an m -cycle of T_r (over \mathbb{Z}_2). Next suppose that $g = \sum_{i=1}^n g_i$ is an m-chain of T_r (over \mathbb{Z}_2) where $g_i: \Delta^m \to T_r$ are singular m -simplices. Take an m -simplex for each i and index them as Δ_i^m . Let Δ_i^{m-1} denote a codimension 1 face of Δ_i^m . Construct a ∆-complex Π as follows:

- \bullet $|\Pi| = \cup_{i=1}^n \Delta_i^m$
- For each $\ell \neq j$ we identify Δ_{ℓ}^{m} with Δ_{j}^{m} along Δ_{ℓ}^{m-1} and Δ_{j}^{m-1} whenever $g_l|_{\Delta_\ell^{m-1}}=g_j|_{\Delta_j^{m-1}}.$

Subdivide Π if necessary so that Π becomes a simplicial complex. Consider when g is an m -cycle and an m -boundary.

First, suppose g is an m-cycle. Then for any codimension 1 face Δ_i^{m-1} of Δ_i^m there are an even number of j's(including i itself) between 1 and n such

that $g|_{\Delta_i^{m-1}} = g|_{\Delta_j^{m-1}}$ So Π satisfies condition (i) of Definition [2.3](#page-3-0) and we can consider g as a map

$$
g\colon\thinspace \Pi\to T_r
$$

by setting $g|_{\Delta_i^m} = g_i$.

 $\sum_{i=1}^{N} G_i$ where $G_i: \Delta^{m+1} \to T_r$ are singular $(m+1)$ –simplices such that $\partial G=$ Second, suppose g is an m–boundary. Then there is an $(m + 1)$ –chain $G \equiv$ g. As before one can construct a simplicial complex Ω and consider G as a map

$$
G\colon\thinspace\Omega\to T_r
$$

Let $\partial\Omega \equiv \cup \{m-\text{simplices of }\Omega \text{ which are the faces of an odd number of } (m+1)-\}$ simplices}. Note that $\partial \Omega \stackrel{comb.}{\cong} \Pi$ where $\stackrel{comb.}{\cong}$ denotes combinatorial equivalence. This observation will be used to construct an essential cycle in the proof of Proposition [2.6.](#page-4-1)

3 Coarse Alexander duality

We first review the terminology of [\[5\]](#page-23-2). Some terminology already defined is modified in the PL category. Let X be (the geometric realization of) a locally finite simplicial complex. We equip the 1-skeleton $X^{(1)}$ with path metric by defining each edge to have unit length. We call such an X with the metric on $X^{(1)}$ a metric simplicial complex. We say that X has bounded geometry if all links have a uniformly bounded number of simplices. Recall that $X_r \equiv$ $Cls(X^2 - N_r(d(X)))$, see Definition [2.2.](#page-2-1) Also denote:

$$
\begin{cases} B_r(c) \equiv \{x \in X | d(c, x) \le r \} \\ \partial B_r(c) \equiv \{x \in X | d(c, x) = r \} \end{cases}
$$

If $C_*(X)$ is the simplicial chain complex and $A \subset C_*(X)$ then the support of A, denoted by $Support(A)$, is the smallest subcomplex of $K \subset X$ such that $A \subset C_*(K)$. We say that a homomorphism

$$
h\colon C_*(X)\to C_*(X)
$$

is coarse Lipschitz if for each simplex $\sigma \subset X$, Support $(h(C_*(\sigma)))$ has uniformly bounded diameter. We call a coarse Lipschitz map with

$$
D \equiv max_{\sigma} diam(\;Support(h(C_*(\sigma)))\;)
$$

D-Lipschitz. We call a homomorphism h uniformly proper, if it is coarse Lipschitz and there exists a proper function $\phi: \mathbb{R}_+ \to \mathbb{R}$ so that for each subcomplex $K \subset X$ of diameter $\geq r$, $Support(h(C_*(\sigma)))$ has diameter $\geq \phi(r)$.

We say that a homomorphism h has displacement $\leq D$ if for every simplex $\sigma \subset X$, Support($h(C_*(\sigma)) \subset N_D(\sigma)$. A metric simplicial complex is uniformly acyclic if for every R_1 there is an R_2 such that for each subcomplex $K \subset X$ of diameter $\leq R_1$ the inclusion $K \to N_{R_2}(K)$ induces zero on reduced homology groups.

Definition 3.1 (PD group) A group Γ is called an *n*-dimensional *Poincaré* duality group ($PD(n)$ group in short) if the following conditions are satisfied:

- (i) Γ is of type FP and $n = dim(\Gamma)$.
- (ii) $H^j(\Gamma;\mathbb{Z}\Gamma) = \begin{cases} 0 & j \neq n \\ \pi & j \neq n \end{cases}$ \mathbb{Z} $j = n$

Example 3.2 The fundamental group of a closed aspherical k –manifold is a $PD(k)$ group. See [\[3\]](#page-23-4) for details.

Definition 3.3 (Coarse Poincaré duality space [\[5\]](#page-23-2)) A Coarse Poincaré duality space of formal dimension k, $PD(k)$ space in short, is a bounded geometry metric simplicial complex X so that $C_*(X)$ is uniformly acyclic, and there is a constant D_0 and chain mappings

$$
C_*(X)\stackrel{\bar P}{\to} C_c^{k-*}(X)\stackrel{P}{\to} C_*(X)
$$

so that

- (i) P and \bar{P} have displacement $\leq D_0$,
- (ii) $P \circ \overline{P}$ and $\overline{P} \circ P$ are chain homotopic to the identity by D₀-Lipschitz chain homotopies $\Phi: C_*(X) \to C_{*+1}(X)$, $\overline{\Phi}: C_c^*$ $c^*_c(X) \to C_c^{*-1}(X)$. We call coarse Poincare duality spaces of formal dimension k a *coarse* $PD(k)$ spaces.

Example 3.4 An acyclic metric simplicial complex that admits a free, simplicial cocompact action by a $PD(k)$ group is a coarse $PD(k)$ space.

For the rest of the paper, let X denote the universal cover of a k-dimensional closed aspherical manifold where $k > 1$.

Assume also that X has a triangulation so that X is a metric simplicial complex with bounded geometry, and $G = \pi_1(M)$ acts on X properly discontinuously, cocompactly, simplicially, and freely by isometries. In particular, G is a $PD(k)$ group and X is a coarse $PD(k)$ space. The following theorem was proved in [\[5\]](#page-23-2). Pro-Category theory is reviewed in Appendix A.

A lower bound to the action dimension of a group 281

Theorem 3.5 (Coarse Alexander duality [\[5\]](#page-23-2)) Suppose Y is a coarse $PD(n)$ space, Y' is a bounded geometry, uniformly acyclic metric simplicial complex, and $f: C_*(Y') \to C_*(Y)$ is a uniformly proper chain map. Let $K \equiv$ $Support(f(C_*(Y'))), Y_R \equiv Cls(Y - N_R(K))$. Then we can choose $0 < r_1 <$ $r_2 < r_3 < \dots$ and define the inverse system $proj(\hat{Y}_r) \equiv \{ \tilde{H}_j(Y_{r_i}), i_*, \mathbb{N} \}$ so that

$$
pro\widetilde{H}_{n-j-1}(Y_r) \cong H_c^j(Y').
$$

We rephrase the coarse Alexander duality theorem.

Lemma 3.6 Recall that X is a metric simplicial complex with bounded geometry and a group G acts on X properly discontinuously, cocompactly, simplicially, and freely by isometries. Also recall that $X_r \equiv Cls(X^2 - N_r(d(X)))$. One can choose $0 < r_1 < r_2 < r_3 < \ldots$ and define the inverse system $\text{pro} \widetilde{H}_j(X_r)$ $\equiv \{ \tilde{H}_j(X_{r_i}), i_*, \mathbb{N} \}$ so that:

$$
pro\widetilde{H}_j(X_r) = \begin{cases} \n\mathbf{0}, & j \neq k-1 \\ \n\mathbb{Z}_2, & j = k-1 \n\end{cases}
$$

Proof Consider the diagonal map

$$
d\colon X \to X^2, \ x \mapsto (x, x)
$$

and note that d is uniformly proper and X^2 is a $PD(2k)$ space. Theorem [3.5](#page-7-0) implies that

$$
pro\widetilde{H}_{2k-*-1}(X_r) = H_c^*(X).
$$

Finally observe that $H_c^*(X) \cong H_{k-*}(\mathbb{R}^k) \cong H_c^*(\mathbb{R}^k)$.

Now we prove Proposition [2.6.](#page-4-1)

Proof of Proposition [2.6](#page-4-1) Let $r > 0$ be given. First use Lemma [3.6](#page-8-0) to choose $r = r_1 < r_2 < \ldots < r_{k-1} < r_k$ so that

$$
i_*\colon \tilde{H}_j(X_{r_{m+1}}) \to \tilde{H}_j(X_{r_m})
$$

is trivial for $j \neq k - 1$. In particular, $i: X_{r_k} \to X_{r_{k-1}}$ is trivial in π_0 . Let $S^0 \equiv \{e, w\}$ and define an involution a_0 on S^0 by $a_0(e) = w$ and $a_0(w) = e$. Let θ : $(S^0, a_0) \to (X_{r_k}, s)$ be an equivariant map where s is the obvious involution on X_{r_i} . Now let

$$
\sigma\colon\thinspace I\to X_{r_{k-1}}
$$

be a path so that $\sigma(0) = \theta(e)$ and $\sigma(1) = \theta(w)$. Define

$$
\sigma' \colon I \to X_{r_{k-1}}
$$

Algebraic & Geometric Topology, Volume 4 (2004)

Figure 1: σ_1

by $\sigma'(t) = s\sigma(t)$. Observe that $\sigma_1 \equiv \sigma + \sigma'$ is an 1-cycle in $X_{r_{k-1}}$. See Figure [1.](#page-9-0)

Let a_1 be the obvious involution on S^1 and consider σ_1 as an equivariant map

$$
\sigma_1\colon (S^1, a_1) \to (X_{r_{k-1}}, s).
$$

Since i_* : $\tilde{H}_1(X_{r_{k-1}}) \to \tilde{H}_1(X_{r_{k-2}})$ is trivial, σ_1 is the boundary of a 2-chain in $X_{r_{k-2}}$. Call this 2 -chain $\sigma_2^+ = \sum_{i=1}^m g_i$ where g_i are singular 2-simplices. Following Remark [\(3\)](#page-5-0) after Proposition [2.6,](#page-4-1) construct a simplicial complex $\tilde{\Sigma}_{+}^{2}$ such that

$$
\sigma_2^+ : \tilde{\Sigma}_+^2 \to X_{r_{k-2}}
$$
 and $\partial \sigma_2^+ = \sigma_1$.

See Figure [2.](#page-9-1) Define the *boundary* of $\tilde{\Sigma}^2_+$, $\partial \tilde{\Sigma}^2_+$, to be the union of 1-simplices, which are the faces of an odd number of 2–simplices. Recall also from Re-mark [\(3\)](#page-5-0) that $\partial \tilde{\Sigma}_{+}^{2} \stackrel{comb.}{\cong} S^{1}$ where $\stackrel{comb.}{\cong}$ denotes combinatorial equivalence.

Figure 2: $\tilde{\Sigma}_{+}^{2}$

Next, let $\sigma_2^- = s\sigma_2^+ = \sum_{i=1}^m s g_i$. Take a copy of $\tilde{\Sigma}^2_+$, denoted by $\tilde{\Sigma}^2_-$, such that $\sigma_2^ \overline{2}: \tilde{\Sigma}^2 \to X_{r_{k-2}}$ and $\partial \sigma_2^- = \sigma_1$.

Construct $\tilde{\Sigma}^2$ by attaching $\tilde{\Sigma}^2_+$ and $\tilde{\Sigma}^2_-$ along $S^1 = \partial \tilde{\Sigma}^2_+ = \partial \tilde{\Sigma}^2_-$ by identifying $x \sim a_1(x)$. That is, $\tilde{\Sigma}^2 \equiv \tilde{\Sigma}_+^2 \cup_{S^1} \tilde{\Sigma}_-^2$. See Figure [3.](#page-10-0) Define an involution a_2

Figure 3: Constructing $\tilde{\Sigma}^2$

on $\tilde{\Sigma}^2$ by setting

$$
a_2(x) = \begin{cases} x \in \tilde{\Sigma}_+^2 & \text{if } x \in \tilde{\Sigma}_-^2 - S^1 \\ x \in \tilde{\Sigma}_-^2 & \text{if } x \in \tilde{\Sigma}_+^2 - S^1 \\ a_1(x) & \text{if } x \in S^1 \end{cases}
$$

Observe that $\sigma_2 \equiv \sigma_2^+ + \sigma_2^ \overline{2}$ is a 2-cycle in X_{r_2} and we can consider σ_2 as an equivariant map

$$
\sigma_2\colon (\tilde{\Sigma}^2, a_2)\to (X_{r_{k-2}}, s).
$$

Continue inductively and construct a $(k-1)$ –cycle

$$
\sigma_{k-1}
$$
: $(\tilde{\Sigma}^{k-1}, a_{k-1}) \to (X_{r_1} = X_{r_{k-(k-1)}}, s)'$

Simply write a instead of a_{k-1} , and note that $X_{r_1} \subset X_r$. So $(\tilde{\Sigma}^{k-1}, a)$ satisfies conditions (i)–(ii) of Definition [2.3](#page-3-0) and we only need to show that it satisfies condition (iii).

It was proved in [\[2\]](#page-23-1) that there exists a \mathbb{Z}_2 -equivariant homotopy equivalence $\tilde{h}: X_0 \to S^{k-1}$. So \tilde{h} induces a homotopy equivalence

$$
h\colon X_0/\sim\to \mathbb{R}P^{k-1}.
$$

Let $g \equiv h i \sigma_{k-1}$: $\tilde{\Sigma}^{k-1} \stackrel{\sigma_{k-1}}{\rightarrow} X_r \stackrel{i}{\rightarrow} X_0 \stackrel{h}{\rightarrow} S^{k-1}$. Note that g is equivariant. We shall prove that $deg(g) = 1 \pmod{2}$ by constructing another map

$$
f_{k-1}\colon\thinspace \tilde{\Sigma}^{k-1}\to S^{k-1}
$$

with odd degree and applying Proposition [2.4.](#page-3-1)

Observe that

$$
S^1\subset \tilde{\Sigma}^2\subset \tilde{\Sigma}^3\subset \ldots \subset \tilde{\Sigma}^{k-2}\subset \tilde{\Sigma}^{k-1}
$$

and for each $i, 2 \leq i \leq k - 1$:

$$
\tilde{\Sigma}^i = \tilde{\Sigma}^i_+ \cup_{\tilde{\Sigma}^{i-1}} \tilde{\Sigma}^i_-
$$

Now construct a map $f_{k-1}: \tilde{\Sigma}^{k-1} \to S^{k-1}$ as follows: First let $f_1: S^1 \to S^1$ be the identity and extend f_1 to f_2^{\perp} : $\tilde{\Sigma}_{+}^2 \to B^2$ by Tietze Extension theorem. Without loss of generality assume that $(f_2^+)^{-1}(S^1) \subset S^1 \stackrel{comb.}{\cong} \partial \tilde{\Sigma}^2_+$. Then extend equivariantly to $f_2: \tilde{\Sigma}^2 \to S^2$. Note that $f_2^{-1}(B_+^2) \subset \tilde{\Sigma}_+^2$, $f_2^{-1}(B_-^2) \subset$ $\tilde{\Sigma}^2_-,$ and $f_2^{-1}(S^1) \subset S^1$.

Continue inductively and construct an equivariant map

$$
f_{k-1} \colon \tilde{\Sigma}^{k-1} \to S^{k-1}.
$$

By construction, we know that

$$
f_j^{-1}(B_+^j) \subset \tilde{\Sigma}_+^j
$$
, $f_j^{-1}(B_-^j) \subset \tilde{\Sigma}_-^j$, and $f_j^{-1}(S^{j-1}) \subset \tilde{\Sigma}^{j-1}$, $2 \le j \le k - 1$.

Observe that $deg(f_{k-1}) = deg(f_{k-2}) = \ldots = deg(f_2) = deg(f_1)$. (Recall that $deg(f_m) \equiv$ the number of m-simplices of $\tilde{\Sigma}^m$ mapped into a simplex s of S^m by f.) But $deg(f_1) = id_{S^1} = 1 \pmod{2}$ so $f_{k-1}: \tilde{\Sigma}^{k-1} \to S^{k-1}$ has nonzero degree. Now Proposition [2.4](#page-3-1) implies that $deg(g) = 1 (mod 2)$. Therefore $(\tilde{\Sigma}^{k-1}, a)$ with equivariant map

$$
\sigma_{k-1}\colon\thinspace \tilde\Sigma^{k-1}\to X_r.
$$

satisfies conditions (i) , (ii) , and (iii) of Definition [2.3.](#page-3-0) Now the proof of Proposition [2.6](#page-4-1) is complete.

4 New proper obstructors out of old

In this Section, we construct a k–proper obstructor from a $(k-1)$ –proper obstructor X .

Definition 4.1 Let (Y, d_Y) be a proper metric space and (α, d_α) be a metric space isometric to $[0,\infty)$. Let $\phi: [0,\infty) \to \alpha$ be an isometry and denote $\phi(t)$ by α_t . Define a metric space $(Y \vee \alpha, d)$, called Y union a ray, as follows:

- (i) As a set $Y \vee \alpha$ is the wedge sum. That is, $Y \vee \alpha = Y \cup \alpha$ with $Y \cap \alpha = {\alpha_0}$
- (ii) The metric d of $Y \vee \alpha$ is defined by

$$
\begin{cases}\n d(v, w) = d_Y(v, w), & \text{if } v, w \in Y \\
 d(v, w) = d_\alpha(v, w), & \text{if } v, w \in \alpha \\
 d(v, w) = d_Y(v, \alpha_0) + d_\alpha(\alpha_0, w), & \text{if } v \in Y, w \in \alpha\n\end{cases}
$$

Proposition 4.2 Let X be a k-dimensional contractible manifold without boundary and $k > 1$. Suppose also that X has a triangulation so that X is a metric simplicial complex and a group G acts on X properly discontinuously, cocompactly, simplicially, and freely by isometries. In particular, X is a $(k-1)$ – proper obstructor. Then $X \vee \alpha$ is a k–proper obstructor.

Proof Recall that by Lemma [3.6,](#page-8-0) we can choose $0 < r_1 < r_2 < r_3...$ and define $proj\tilde{H}_{k-1}(X_r) \equiv \{\tilde{H}_{k-1}(X_{r_i}), i_*, \mathbb{N}\}\$ so that $proj\tilde{H}_{k-1}(X_r) = \mathbb{Z}_2$. This means that for any $r > 0$ we can choose $R > r$ so that

$$
r' \ge R \Rightarrow \mathbb{Z}_2 = i_*(H_{k-1}(X_{r'})) \le H_{k-1}(X_r).
$$

Now let $r > 0$ be given and choose $R > r$ as above. Let $(\tilde{\Sigma}^{k-1}, a)$ be an essential \mathbb{Z}_2 –(k – 1)–cycle with a \mathbb{Z}_2 –equivariant map

$$
f\colon\thinspace \tilde\Sigma^{k-1}\to X_R.
$$

Next consider composition $i \circ f: \tilde{\Sigma}^{k-1} \stackrel{f}{\to} X_R \stackrel{i}{\to} X_r$. If $i \circ f \in Z_{k-1}(X_r)$ is the boundary of a k–chain then we can construct an essential $\mathbb{Z}_2 - k$ –cycle with \mathbb{Z}_2 – equivariant map into X_r using the method used in the proof of Proposition [2.6.](#page-4-1) But this implies X is a k-proper obstructor. (Recall that X^k is a $(k-1)$ proper obstructor.) So we can assume $i \circ f \in Z_{k-1}(X_r) - B_{k-1}(X_r)$. That is, $0 \neq [i \circ f] = i_*[f] \in H_{k-1}(X_r)$. Let $p_i: X_r \to X$ denote the projection to the *i*-th factor, $i = 1, 2$.

We need the following lemma.

Lemma 4.3 Define $j: X - B_R \to X_R$, $x \mapsto (\alpha_0, x)$. Then the composition

$$
i_* \circ j_* \colon H_{k-1}(X - B_R(\alpha_0)) \stackrel{j_*}{\to} H_{k-1}(X_R) \stackrel{i_*}{\to} H_{k-1}(X_r)
$$

is nontrivial.

The proof of Lemma [4.3](#page-12-0) Consider a map $\lambda: H_{k-1}(X_0) \to \mathbb{Z}_2$ given by

$$
[f] \mapsto Lk(f, \Delta) (mod\ 2)
$$

where $Lk(f, \Delta)$ denote the linking number of f with the diagonal Δ .² Now consider the composition:

 $\zeta\colon H_{k-1}(X-B_R(\alpha_0))\stackrel{j_*}{\to} H_{k-1}(X_R)\stackrel{i_*}{\to} H_{k-1}(X_0)\stackrel{\lambda}{\to}{\mathbb Z}_2$

²We can compute $Lk(f, \Delta)$ by letting f bound a chain f transverse to Δ and setting $Lk(f, \Delta) = Card(\tilde{f}^{-1}(\Delta)).$

We shall show that ζ is nontrivial. Choose $[f_1] \in H_{k-1}(X - B_R)$ so that $Lk(f_1, \alpha_0) \neq 0$ where $[\alpha_0] \in H_0(X)$. Then $Lk(i_*j_*([f_1]), \Delta) \neq 0$. (We can choose the same chain transverse to Δ .) Hence ζ is nontrivial. In particular, $i_* \circ j_*$ and j_* are nontrivial. \Box

Since j_* : $H_{k-1}(X - B_R) \rightarrow H_{k-1}(X_R)$ is nontrivial, we can choose $h \in$ $Z_{k-1}(X - B_R) - B_{k-1}(X - B_R)$ with $g \equiv j \circ h \in Z_{k-1}(X_R) - B_{k-1}(X_R)$. That is, $0 \neq [g] \in H_{k-1}(X_R)$. We can consider g as a map $g: \Pi \to X_R$ where Π is a $(k-1)$ –dimensional simplicial complex satisfying condition (i) of Definition [2.3](#page-3-0) such that

- $0 \neq i_*[q] \in H_{k-1}(X_r)$
- $i \circ g$: $\Pi \stackrel{g}{\to} X_R \stackrel{i}{\to} X_r$ with $p_1(|i \circ g(\Pi)|) = {\alpha_0} = X \cap \alpha(0)$.

Next define $g' = sg$, that is,

$$
g'\colon\thinspace \Pi \stackrel{g}{\to} X_R \stackrel{s}{\to} X_R.
$$

Note that $i \circ g'$ is a cycle in X_R and $p_2(i \circ g'(\Pi)) = \alpha_0$. Also $[f], [g] \in H_{k-1}(X_R)$ and $i_*[f], i_*[g] \in H_{k-1}(X_r)$ are nonzero. Observe that $i \circ f$ and $i \circ g$ must be homologous in X_r since $\mathbb{Z}_2 = i_*(H_{k-1}(X_R)) \leq H_{k-1}(X_r)$. We simply write f, g, and g' instead of $i \circ f$, $i \circ g$, and $i \circ g'$. There exists a k -chain $G \in C_k(X_r)$ such that

$$
\partial G = f + g.
$$

Again consider G as a map $G: \Omega \to X_r$ where Ω is a simplicial complex so that

$$
\partial\Omega = \tilde{\Sigma}^{k-1} \sqcup \Pi.
$$

See Figure [4.](#page-14-0)

Next define $G' = sG$, that is,

$$
G': \Omega \stackrel{G}{\to} X_r \stackrel{s}{\to} X_r.
$$

Note that

$$
\partial G'=f+g'.
$$

Now take two copies of Ω and index them as Ω_1 and Ω_2 . Similarly $\Pi_1 \subset \partial \Omega_1$ and $\Pi_2 \subset \partial \Omega_2$. Hence

$$
\partial\Omega_i = \tilde{\Sigma}^{k-1} \cup \Pi_i \, , i = 1, 2.
$$

A lower bound to the action dimension of a group 287

Figure 4: Ω

Denote $id(x) = x'$ for $x \in \Omega_1 - \tilde{\Sigma}^k$ where $id: \Omega_1 \to \Omega_2$. Construct a k dimensional simplicial complex $\tilde{\Omega}$ by attaching Ω_1 and Ω_2 along $\tilde{\Sigma}^{k-1}$ by $a: \ \tilde{\Sigma}^{k-1} \to \tilde{\Sigma}^{k-1}$. That is,

$$
\tilde{\Omega} = (\Omega_1 \cup \Omega_2)/x \sim ax, \ x \in \tilde{\Sigma}^{k-1}.
$$

See Figure [5.](#page-14-1)

We can define an involution \bar{a} on $\tilde{\Omega}$ by

$$
\begin{cases}\n\bar{a}(x) = a(x), & x \in \tilde{\Sigma}^{k-1}, \\
\bar{a}(x) = x', & x \in \Omega_1 - \tilde{\Sigma}^{k-1}, \\
\bar{a}(x') = x, & x' \in \Omega_2 - \tilde{\Sigma}^{k-1}.\n\end{cases}
$$

Also we can define a \mathbb{Z}_2 -equivariant map $\Phi: \tilde{\Omega} \to X_r$ by:

$$
\begin{cases} \Phi|_{\Omega_1} = G \\ \Phi|_{\Omega_2} = G' \end{cases}
$$

We define

$$
\tilde{\Sigma}^k = (\Pi_1 \times [0,1]/(\Pi_1, 1) \sim *) \cup_{\Pi_1} \tilde{\Omega} \cup_{\Pi_2} (\Pi_2 \times [0,-1]/(\Pi_2,-1) \sim *).
$$

Figure 5: Constructing $\tilde{\Omega}$

Figure 6: Constructing $\tilde{\Sigma}^k$

Suppose that Σ^k classifies into $\mathbb{R}P^m$ where $m < k$. Let

$$
h\colon\thinspace \Sigma^k\to \mathbb RP^m
$$

be the classifying map and

$$
\tilde{h} \colon \tilde{\Sigma}^k \to S^m
$$

be the equivariant map covering h . Observe that

$$
deg \ \tilde{h}|_{\tilde{\Sigma}^{k-1}} = deg \ \tilde{h} = 0 \ (mod \ 2)
$$

This is a contradiction since there already exists a \mathbb{Z}_2 -equivariant map

$$
\varphi\colon\thinspace\tilde\Sigma^{k-1}\to S^{k-1}
$$

of odd degree. Hence $(\tilde{\Sigma}^k, \bar{a})$ is an essential \mathbb{Z}_2-k -cycle.

Finally, we need to define a \mathbb{Z}_2 -equivariant map:

$$
F\colon\thinspace \tilde\Sigma^k\to (X\vee\alpha)_r
$$

Recall that $p_1g(\Pi) = \alpha_0$ and let

$$
c\colon p_2g(\Pi_1)\times I\to X
$$

be a contraction to α_0 . Similarly $p_2g'(\Pi) = \alpha_0$ and let

 $c' \colon p_1 g'(\Pi_1) \times I \to X$

be a contraction to α_0 . Define a \mathbb{Z}_2 -equivariant map

$$
F\colon\thinspace \tilde{\Sigma}^k\to (X\vee\alpha)_r
$$

as follows: Recall that $\phi(t) = \alpha_t$ in Definition [4.1,](#page-11-1) so $d(\alpha_0, \alpha_s) = s$ and $d(\alpha_s, x) \geq s$ for any $x \in X$.

$$
\begin{cases}\nF|_{\tilde{\Omega}} = \Phi \\
F(x, t) = (\alpha_{2rt}, p_2g(x)), & x \in \Pi_1, t \in [0, \frac{1}{2}] \\
F(x, t) = (\alpha_r, c_{(2t-1)}(p_2g(x))), & x \in \Pi_1, t \in [\frac{1}{2}, 1] \\
F(x, t) = (\n{p_1g'(x)}, \alpha_{-2rt}), & x \in \Pi_2, t \in [0, -\frac{1}{2}] \\
F(x, t) = (\n{c}_{(-2t-1)}(p_1g'(x)), \alpha_r), & x \in \Pi_2, t \in [-\frac{1}{2}, -1]\n\end{cases}
$$

The proof of Proposition [4.2](#page-11-2) is now complete.

If Y and Z are metric spaces we use the *sup metric* on $Y \times Z$ where

$$
d_{sup}((y_1, z_1), (y_2, z_2)) \equiv max\{d_Y(y_1, y_2), d_Z(z_1, z_2)\}.
$$

Proposition 4.4 Suppose X_1, X_2 are m_1, m_2 -proper obstructors, respectively. Then $X_1 \times X_2$ is an (m_1+m_2+1) –proper obstructor.

Proof Let $r > 0$ be given and let

$$
\begin{cases} f_1 \colon \tilde{\Sigma}_1^{m_1} \to (X_1)_r \\ f_2 \colon \tilde{\Sigma}_2^{m_2} \to (X_2)_r \end{cases}
$$

be \mathbb{Z}_2 -equivariant maps for essential \mathbb{Z}_2 -cycles. Note that

$$
(X_1 \times X_2)_r = ((X_1)_r \times (X_2)^2) \cup_{(X_1)_r \times (X_2)_r} ((X_1)^2 \times (X_2)_r).
$$

Let a_1 be the involution on $(X_1)_r$ and a_2 be the involution on $(X_2)_r$. Recall that the join $\tilde{\Sigma}_1^{m_1} * \tilde{\Sigma}_2^{m_2}$ is obtained from $\tilde{\Sigma}_1^{m_1} \times \tilde{\Sigma}_2^{m_2} \times [-1,1]$ by identifying $\tilde{\Sigma}_1^{m_1} \times \{y\} \times \{1\}$ to a point for every $y \in \tilde{\Sigma}_2^{m_2}$ and identifying $\{x\} \times \tilde{\Sigma}_2^{m_2} \times \{-1\}$ to a point for every $x \in \tilde{\Sigma}_1^{m_1}$. Define an involution a on $\tilde{\Sigma}_1^{m_1} * \tilde{\Sigma}_2^{m_2}$ by

$$
a(v, w, t) = (a_1(v), a_2(w), t).
$$

Let

$$
\left\{ \begin{array}{l} g_1\colon\thinspace \tilde{\Sigma}_1^{m_1}\to S^{m_1} \\ g_2\colon\thinspace \tilde{\Sigma}_2^{m_2}\to S^{m_2} \end{array} \right.
$$

be equivariant maps of odd degree. Then:

$$
g_1 * g_2 \colon \tilde{\Sigma}_1^{m_1} * \tilde{\Sigma}_2^{m_2} \to S^{m_1} * S^{m_2} = S^{m_1 + m_2 + 1}
$$

$$
(v, w, t) \mapsto (g_1(v), g_2(w), t)
$$

is also an equivariant map of an odd degree. Hence $(\tilde{\Sigma}_1^{m_1} * \tilde{\Sigma}_2^{m_2}, a)$ is an essential $\mathbb{Z}_2 - (m_1 + m_2 + 1)$ –cycle.

Algebraic & Geometric Topology, Volume 4 (2004)

290 Sung Yil Yoon

Now let

$$
c\colon f_1(\tilde{\Sigma}_1^{m_1}) \times [-1,1] \to X_1^2
$$

be a Z₂-equivariant contraction to a point such that $c_t = id$ for $t \in [-1, 0]$. Similarly let

$$
d\colon f_2(\tilde{\Sigma}_2^{m_2})\times [-1,1] \to X_2^2
$$

be a \mathbb{Z}_2 -equivariant contraction to a point such that $d_t = id$ for $t \in [0,1]$.

Finally define

$$
f: \tilde{\Sigma}_1^{m_1} * \tilde{\Sigma}_2^{m_2} \to (X_1 \times X_2)_r
$$
 by $f(v, w, t) = (c_t(f_1(v)), d_t(f_2(w))).$

We note that f is \mathbb{Z}_2 -equivariant.

5 Proper obstructor dimension

We review one more notion from [\[2\]](#page-23-1).

Definition 5.1 The uniformly proper dimension, updim(G), of a discrete group G is the smallest integer m such that there is a contractible m -manifold W equipped with a proper metric d_W , and there is a $g: \Gamma \to W$ with the following properties:

- g is Lipschitz and uniformly proper.
- There is a function $\rho: (0,\infty) \to (0,\infty)$ such that any ball of radius r centered at a point of the image of h is contractible in the ball of radius $\rho(r)$ centered at the same point.

If no such *n* exists, we define $updim(G) = \infty$.

It was proved in [\[2\]](#page-23-1) that

$$
updim(G) \leq actdim(G).
$$

Now we generalize the obstructor dimension of a group.

Definition 5.2 The proper obstructor dimension of G , pobdim(G), is defined to be 0 for finite groups, 1 for 2–ended groups, and otherwise $m+1$ where m is the largest integer such that for some m -proper obstructor Y, there exists a uniformly proper map

$$
\phi\colon\thinspace\relax Y\rightarrow T_G
$$

where T_G is a proper metric space with a quasi-isometry $q: T_G \to G$.

Algebraic & Geometric Topology, Volume 4 (2004)

Lemma 5.3 Let Y be an m -proper obstructor. If there is a uniformly proper map $\beta: Y \to W^d$ where W is a contractible d–manifold then $d > m$.

Proof Assume $d \leq m \ (d-1 \leq m-1)$. Observe that if β is uniformly proper then β induces an equivariant map $\overline{\beta}$: $Y_r \to W_0$ for some large $r > 0$. Now let $f: \tilde{\Sigma}^m \to Y_r$ be an essential \mathbb{Z}_2 -m-cycle where f is equivariant. Let h: $W_0 \to$ S^{d-1} be an equivariant homotopy equivalence. We have an equivariant map

$$
g=ih\bar{\beta}f\colon\thinspace \tilde{\Sigma}^{m}\stackrel{f}{\to} Y_{r}\stackrel{\bar{\beta}}{\to}W_{0}\stackrel{h}{\to} S^{d-1}\stackrel{i}{\to} S^{m-1}\stackrel{i}{\to} S^{m}
$$

where $i: S^{d-1} \to S^{m-1} \to S^m$ is the inclusion. Note that g is equivariant but $deg(q) = 0 \pmod{2}$. This is a contradiction by Proposition [2.4.](#page-3-1) \Box

Suppose that G is finite so that $pobdim(G) = 0$ by definition.

Clearly, $actdim(G) = 0$ if G is finite. Hence $pobdim(G) = actdim(G) = 0$ in this case. Next suppose that G has two ends so that $pobdim(G)=1$. Note that there exists $\mathbb{Z} \cong H \leq G$ with $|G:H| < \infty$. And this implies that

$$
actdim(G) = actdim(H) = actdim(\mathbb{Z}) = 1.
$$

Therefore, $pobdim(G) = actdim(G) = 1$ when G has two ends. Now we prove the main theorem for the general case.

Main Theorem $pobdim(G) \leq updim(G) \leq actdim(G)$

Proof We only need to show the first inequality. Let $pobdim(G) = m+1$ for some $m > 0$. That is, there exists an m-proper obstructor Y, a proper metric space T_G , a uniformly proper map $\psi: Y \to T_G$, and a quasi-isometry q: $T_G \to G$. Let $updim(G) \equiv d$ such that there exists a uniformly proper map $\phi: G \to W^d$ where W is a contractible d–manifold. But the composition

$$
\phi \circ q \circ \psi \colon Y \to T_G \to G \to W^d
$$

is uniformly proper. Therefore

$$
m + 1 = \text{pobdim}(G) \le \text{updim}(G)
$$

by the previous lemma.

Before we consider some applications, we make the following observation about compact aspherical manifolds with incompressible boundary.

Algebraic & Geometric Topology, Volume 4 (2004)

Lemma 5.4 Assume that W is a compact aspherical m-manifold with all boundary components incompressible. Let $\pi: W \to W$ denote the universal cover of W. Suppose that there is a component of ∂W , call it N, so that $|\pi_1(W):\pi_1(N)| > 2$. Then $|\pi_1(W):\pi_1(N)|$ is infinite.

Proof Observe that N is aspherical also. First, we show that if

 $1 < |\pi_1(W):\pi_1(N)| < \infty$

then $\tilde{M} \equiv \tilde{W}/\pi_1(N)$ has two boundary components and W has one boundary component. We claim that M has a boundary component homeomorphic to N which is still denoted by N . To see this consider the long exact sequence:

$$
\cdots \to H_1(\partial \tilde{M}) \stackrel{i_*}{\to} H_1(\tilde{M}) \to H_1(\tilde{M}, \partial \tilde{M}) \to \tilde{H}_0(\partial \tilde{M}) \to \tilde{H}_0(\tilde{M}) = 0
$$

Since $\pi_1(N) = \pi_1(\tilde{M})$, $i_*: H_1(\partial \tilde{M}) \to H_1(\tilde{M})$ is surjective. So we have:

 $0 \to H_1(\tilde M, \partial \tilde M) \to \tilde H_0(\partial \tilde M) \to 0$

Since $|\pi_1(W):\pi_1(N)|$ is finite \tilde{M} is compact. Now $H_1(\tilde{M}, \partial \tilde{M}) \cong H^{m-1}(\tilde{M})$ by duality. But $H^{m-1}(\tilde{M}) \cong H^{m-1}(N)$ and $H^{m-1}(N) \cong \mathbb{Z}_2$ since N is a closed $(m-1)$ –manifold. That is, $\tilde{H}_0(\partial \tilde{M}) \cong \mathbb{Z}_2$ so \tilde{M} has two boundary components. Next let N and N' denote two boundary components of ∂M both of which are mapped to $N \subset W$ by $p: \tilde{M} \to W$. Hence ∂W has one component.

Now assume that $m \equiv |\pi_1(W):\pi_1(N)| > 2$. Suppose m is finite. Note that $p|_N\colon N(\subset \tilde{M}) \to N(\subset W)$ has index 1, and $p|_{N'}\colon N'(\subset \tilde{M}) \to N(\subset W)$ has index $m-1$. This means that $|\pi_1(M):\pi_1(N')|=m-1$ since $\pi_1(M)=\pi_1(N)$. There are two alternative arguments:

- If $m > 2$ then \tilde{M} is an aspherical manifold with two boundary components N and N' with $|\pi_1(M):\pi_1(N')|=m-1>1$. Consider $\tilde{W}/\pi_1(N')$. The same argument applied to $\tilde{W}/\pi_1(N')$ shows that \tilde{M} has one boundary component, which is a contradiction. Therefore $|\pi_1(W):\pi_1(N)|$ is infinite.
- Suppose $m > 2$. Choose a point $x \in N \subset \partial W$ and let $\tilde{x} \in N \subset \partial \tilde{M}$ so that $p(\tilde{x}) = x$. Next choose two loops α and β in W based at x so that ${\pi_1(N), [\alpha]\pi_1(N), [\beta]\pi_1(N)}$ are distinct cosets. (We are assuming $|\pi_1(W):\pi_1(N)| > 2.$) Let $\tilde{\alpha}$ and β be the liftings of α and β respectively so that $\tilde{\alpha}(0) = \tilde{x} = \tilde{\beta}(0)$. Note that $\tilde{y}_1 \equiv \tilde{\alpha}(1), \tilde{y}_2 \equiv \tilde{\beta}(1) \in N'$ and $\tilde{y}_1 \neq \tilde{y}_2$ since $[\alpha]\pi_1(N) \neq [\beta]\pi_1(N)$. Now consider a path $\tilde{\gamma}$ in N' from \tilde{y}_1 to \tilde{y}_2 . Observe that $p\tilde{\gamma} \equiv \gamma$ is a loop based at x, and $[\gamma] \in p_*(\pi_1(N')) \leq \pi_1(N)$. But $[\alpha][\gamma][\beta]^{-1} = 1$ and this implies that $[\alpha]^{-1}[\beta] \in \pi_1(N)$ contary to $[\alpha]\pi_1(N) \neq [\beta]\pi_1(N).$ \Box

Corollary 5.5 (Application) Suppose that W is a compact aspherical m manifold with incompressible boundary. Also assume that there is a component of ∂W , call it N, so that $|\pi_1(W):\pi_1(N)| > 2$. Then $actdim(\pi_1(W))=m$.

Proof Let $p: \tilde{W} \to W$ be the universal cover of W. It is obvious that $\operatorname{actdim}(\pi_1(W)) \leq m$ as $\pi_1(W)$ acts cocompactly and properly discontinuously on \tilde{W} . Denote $G \equiv \pi_1(W)$ and $H \equiv \pi_1(N)$. Let \tilde{N} be a component of $p^{-1}(N)$. Therefore \tilde{N} is the contractible universal cover of $N^{(m-1)}$. Note that \tilde{N} is an $(m-2)$ –proper obstructor by Proposition [2.6.](#page-4-1) Now \tilde{W}/H has a boundary component homeomorphic to N. Call this component N also. $|G:H|$ is infinite by the previous lemma, and this implies that W/H is not compact. In particular, there exists a map α' : $[0,\infty) \to \tilde{W}/H$ with the following property: For each $D > 0$ there exists $T \in [0, \infty)$ such that for any $x \in N$, $d(\alpha'(t), x) > D$ for $t > T$, and $\alpha'(0) \in N$. Let $\tilde{\alpha}: [0, \infty) \to \tilde{W}$ be a lifting of α' such that $\tilde{\alpha}(0) \in \tilde{N}$. Now we define a uniformly proper map:

$$
\phi: \ \tilde{N} \vee \alpha \to \tilde{W}
$$

$$
\begin{cases} \phi|_{\tilde{N}} = inclusion \\ \phi(\alpha_t) = \tilde{\alpha}(t) \end{cases}
$$

Observe that ϕ is a uniformly proper map. Since $\tilde{N} \vee \alpha$ is an $(m-1)$ –proper obstructor and \tilde{W} is quasi-isometric to G, pobdim(G) > m. But

$$
podim(G) \leq updim(G) \leq actdim(G) \leq m.
$$

The last inequality follows from the fact that G acts on \tilde{W} properly discontinuously. Therefore $pobdim(G)=m$. □

The following corollary answers Question 2 found in [\[2\]](#page-23-1).

Corollary 5.6 (Application) Suppose that W_i is a compact aspherical m_i manifold with incompressible boundary for $i = 1, \ldots, d$. Also assume that for each i, $1 \leq i \leq d$, there is a component of ∂W_i , call it N_i , so that $|\pi_1(W_i): \pi_1(N_i)| > 2$. Let $G \equiv \pi_1(W_1) \times ... \times \pi_1(W_d)$. Then:

$$
actdim(G) = m_1 + \ldots + m_d
$$

Proof It is easy to see that

$$
actdim(G) \leq m_1 + \ldots + m_d
$$

as G acts cocompactly and properly discontinuously on $\tilde{W}_1 \times \cdots \times \tilde{W}_d$. Denote $\pi_1(W_i) \equiv G_i$ and $\pi_1(N_i) \equiv H_i$. Let

$$
p\colon\thinspace \tilde W_i\to W_i
$$

be the contractible universal cover and let \tilde{N}_i be a component of $p^{-1}(N_i)$. Since N_i is incompressible, \tilde{N}_i is the contractible universal cover of $N_i^{(m_i-1)}$ $\frac{(m_i-1)}{i}$.

By the previous Corollary, there are uniformly proper maps:

$$
\phi_1: \tilde{N}_1 \vee \alpha \to \tilde{W}_1
$$

$$
\phi_2: \tilde{N}_2 \vee \beta \to \tilde{W}_2
$$

So there exists a uniformly proper map:

$$
\phi_1 \times \phi_2 \colon \left(\tilde{N}_1 \vee \alpha \right) \times \left(\tilde{N}_2 \vee \beta \right) \to \tilde{W}_1 \times \tilde{W}_2
$$

Recall that $(\tilde{N}_1 \vee \alpha) \times (\tilde{N}_2 \vee \beta)$ is an $(m_1 + m_2 - 1)$ -proper obstructor by Proposition [4.4.](#page-16-0) Since $\tilde{W}_1 \times \tilde{W}_2$ is quasi-isometric to $G_1 \times G_2$:

$$
pobdim(G_1 \times G_2) \ge m_1 + m_2
$$

But $G_1 \times G_2$ acts on $\tilde{W}_1 \times \tilde{W}_2$ properly discontinuously, and this implies that:

$$
pobdim(G_1 \times G_2) \leq actdim(G_1 \times G_2) \leq m_1 + m_2
$$

Therefore, $pobdim(G_1 \times G_2) = m_1 + m_2$.

Continue inductively and we conclude that:

$$
pobdim(G) = pobdim(G_1 \times \cdots \times G_d) = m_1 + \ldots + m_d
$$

Finally we see that

$$
pobdim(G) \leq updim(G) \leq actdim(G) \Rightarrow actdim(G) = m_1 + \dots + m_d \qquad \Box
$$

Acknowledgements The author thanks Professor M. Bestvina for numerous helpful discussions.

A Pro-Category of Abelian Groups

With every category K we can associate a new category $\text{pro}(K)$. We briefly review the definitions, see [\[1\]](#page-23-5) or [\[6\]](#page-23-6) for details. Recall that a partially ordered set (Λ, \leq) is directed if, for $i, j \in \Lambda$, there exists $k \in \Lambda$ so that $k \geq i, j$.

Definition A.1 (Inverse system) Let (Λ, \leq) be a directed set. The system $\mathbf{A} = \{A_{\lambda}, p_{\lambda}^{\lambda'}\}$ $\{\lambda,\Lambda\}$ is called an *inverse system* over (Λ,\leq) in the category \mathcal{K} , if the following conditions are true.

- (i) $A_{\lambda} \in Ob_{\mathcal{K}}$ for every $\lambda \in \Lambda$
- (ii) $p_{\lambda}^{\lambda'} \in Mor_{\mathcal{K}}(A_{\lambda'}, A_{\lambda})$ for $\lambda' \geq \lambda$
- (iii) $\lambda \leq \lambda' \leq \lambda'' \Rightarrow p_{\lambda}^{\lambda'}$ $\lambda' p_{\lambda'}^{\lambda''} = p_{\lambda}^{\lambda''}$ λ

Definition A.2 (A map of systems) Given two inverse systems in K ,

$$
\mathbf{A} = \{A_{\lambda}, p_{\lambda}^{\lambda'}, \Lambda\}, \text{ and } \mathbf{B} = \{B_{\mu}, q_{\mu}^{\mu'}, M\}
$$

the system

$$
\bar{f} = (f, f_{\lambda}) : \mathbf{A} \to \mathbf{B}
$$

is called a map of systems if the following conditions are true.

- (i) $f: M \to \Lambda$ is an increasing function
- (ii) $f(M)$ is cofinal with Λ
- (iii) $f_{\mu} \in Mor_{\mathcal{K}}(A_{f(\mu)}, B_{\mu})$
- (iv) For $\mu' \ge \mu$ there exists $\lambda \ge f(\mu)$, $f(\mu')$ so that:

$$
q_{\mu}^{\mu'} \circ f_{\mu} \circ p_{f(\mu')}^{\lambda} = f_{\mu} \circ p_{\mu}^{\lambda}
$$

$$
A_{f(\mu)} \xleftarrow{p_{f(\mu')}^{f(\mu')}} A_{f(\mu')} \xleftarrow{p_{\mu}^{\lambda}} A_{\lambda}
$$

$$
f_{\mu} \downarrow \qquad f_{\mu'} \downarrow
$$

$$
B_{\mu} \xleftarrow{q_{\mu}^{\mu'}} B_{\mu'}
$$

 \bar{f} is called a special map of systems if $\Lambda = M$, $f = id$, and $f_{\lambda} p_{\lambda}^{\lambda'} = q_{\lambda}^{\lambda'}$ $\chi' f_{\lambda'}$. Two maps of systems $\bar{f}, \bar{g}: A \rightarrow B$ are considered equivalent, $\bar{f} \simeq \bar{g}$, if for every $\mu \in M$ there is a $\lambda \in \Lambda, \lambda \geq f(\mu), g(\mu)$, such that $f_{\mu} p_{f(\mu)}^{\lambda} = g_{\mu} p_{g(\mu)}^{\lambda}$. This is an equivalence relation.

Definition A.3 (Pro-category) $\text{pro}(\mathcal{K})$ is a category whose objects are inverse systems in K and morphisms are equivalence classes of maps of systems. The class containing f will be denoted by f .

Our main interest is the following pro-category.

Example A.4 Pro-category of abelian groups Let A be the category of abelian groups and homomorphisms. Then corresponding $\text{pro}(\mathcal{A})$ is called the category of pro-abelian groups.

Example A.5 Homology pro-groups Suppose $\{(X, X_0)_i, p_i^{i'}\}$ $i_i^{i'}, \mathbb{N}$ is an object in the pro-homotopy category of pairs of spaces having the homotopy type of a simplicial pair. Then $\{H_j((X,X_0)_i),(p_i^{i'}\})$ $\{i'\}_{*}, \mathbb{N}\}$ is an object of $\text{pro}(\mathcal{A})$. Denote $\{H_j((X,\hat{X_0})_i),(p_i^{i'})\}$ $i'_{i}\rangle_{*}$, N} by $probH_{j}(X, X_{0})$.

We list useful properties of $\text{pro}(\mathcal{A})$:

- (1) A system 0 consisting of a single trivial group is a zero object in $\text{pro}(\mathcal{A})$.
- (2) A pro-abelian group $\{G_i, p_i^{i'}\}$ i' , N} ≅ 0 iff every *i* admits a $i' \ge i$ such that $p_i^{i'}=0.$
- (3) Let **A** denote a constant pro-abelian group $\{A, id_A, \mathbb{N}\}\$. If a pro-abelian group $\{G_i, p_i^{i'}\}$ $i_i^{i'}, \mathbb{N}$ \cong **A** then

$$
\lim_{\leftarrow} G_i = A.
$$

See [\[4,](#page-23-7) Lemma 4.1].

References

- [1] M. Artin, B. Mazur Etale Homotopy, Springer-Verlag, (1969).
- [2] M. Bestvina, M. Kapovich, B. Kleiner van Kampen's embedding obstructions for discrete groups, Invent. Math. (2) 150, 219-235 (2002).
- [3] K. Brown, *Cohomology of Groups*, Springer-Verlag, (1994).
- [4] D. Edwards, R Geoghegan The stability problem in shape, and a Whitehead theorem in pro-homotopy, Trans. of AMS. 214, 261-277 (1975).
- [5] M. Kapovich, B. Kleiner, Coarse Alexander duality and duality groups, preprint, (2001).
- [6] S. Mardešić, On the Whitehead theorem in shape theory I, Fund. Math. 91, 51-64 (1976).
- [7] A. Shapiro, Obstructions to the embedding of a complex in a Euclidean space I. The first obstruction, Ann. of Math. (2) 66, 256-269 (1957).
- [8] E. R. van Kampen, Komplexe in euklidischen Raumen, Abh. Math. Sem. Univ. Hamburg 9, 72-78 and 152-153 (1933).

110 8th Street RPI, Troy, NY 12180, USA

Email: yoons@rpi.edu

Received: 28 March 2003