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HARMONIC TORI AND THEIR SPECTRAL DATA.

IAN MCINTOSH

One of the earliest applications of modern integrable systems theory (or
“soliton theory”) to differential geometry was the solution of the problem
of finding all constant mean curvature (CMC) tori in R

3 (and therefore,
by taking the Gauss map, finding all non-conformal harmonic maps from a
torus to S2). At its simplest level this proceeds from the recognition that
the Gauss-Codazzi equations of a CMC torus are the elliptic sinh-Gordon
equations

(1) uzz̄ + sinh(4u) = 0, z = x+ iy.

It was shown in the late 1980’s ([24, 1]) that each doubly periodic solution
of this equation can be written down in terms of the Riemann θ-function for
a compact Riemann surface X, called the spectral curve (this also follows
from Hitchin’s work [10] on harmonic tori in S3, which used a distinctly
different approach). That this is true relies on two observations. First, (1)
has a zero-curvature (or Lax pair) representation: it is the condition that

[
∂

∂z
− Uζ ,

∂

∂z̄
+ U †

ζ̄−1 ] = 0, Uζ =

(

uz e−2uζ−1

e2uζ−1 −uz

)

, ∀ζ ∈ C
∗,

where ‘†’ denotes the Hermitian transpose. As a result this equation belongs
a hierarchy of infinitely many commuting equations, so that solutions to
(1) may belong to an infinite dimensional family of deformations through
solutions. These deformations are called the “higher flows” of the sinh-
Gordon hierarchy. Secondly, each independent higher flow contributes to
the number of independent Jacobi fields which the CMC surface admits:
these belong to the kernel of the elliptic operator △+ 4cosh(4u). Thus for
a torus there can only be finitely many independent higher flows. It follows
that there must be a higher flow with respect to which the solution u(z, z̄)
is stationary. In this context this means there is a solution to

(2) dξζ = [ξζ , αζ ], αζ = Uζdz − U †

ζ̄−1dz̄,

in which the matrix ξζ(z, z̄) is a Laurent polynomial in ζ: it is called a
polynomial Killing field. The spectral data of the CMC torus consists of
the eigenvalues and eigenlines of ξζ . In particular, equation (2) means ξζ
is isospectral i.e. its characteristic polynomial is independent of z. This
provides us a with an invariant planar algebraic curve which is essentially the
Riemann surface X. Altogether the spectral data consists of the Riemann
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2 IAN MCINTOSH

surface X, which always possesses a real involution, a rational function λ
on X of degree 2, and a line bundle L over X satisfying a certain reality
condition. The CMC surface is determined, up to Euclidean motions, by
its spectral data. However, the existence of a polynomial Killing field is
only a necessary condition for a CMC plane to be doubly periodic. If we
call CMC planes “of finite type” when they possess a polynomial Killing
field then one must still work at distinguishing the tori amongst the planes
of finite type: this is a problem of closing periods on the surface (see e.g.
[1, 8, 11]). This is also true for the Gauss map: the space of non-conformal
harmonic maps ϕ : R2 → S2 of finite type is substantially larger than the
set of non-conformal harmonic tori.

Essentially the same line of argument shows that all non-isotropic har-
monic tori in CP

n, Sn [4, 9] and all non-conformal harmonic tori in rank
1 compact symmetric spaces [5] are of (semisimple) finite type. Although
the construction of the spectral data is more complicated the principle is
the same [17, 18]. However, these complications have the effect of obscuring
the geometry of the original map. In [20] I proposed a more direct geomet-
ric construction of the map from the spectral data, and showed how this
produces pluri-harmonic maps R2k → Grk(C

n+1) as well.
My aim here is to use the example of non-conformal harmonic maps

ϕ : R2 → S2 as a way of motivating the geometric construction of [20].
To this end sections 1.1-1.5 describe the construction and properties of the
spectral data for a map of semisimple finite type into S2. The approach
is more concrete than that of [17] and owes much to [9, 22, 25]. Having
obtained the spectral data we examine it closely, in sections 1.6 and 1.7, to
see exactly what is needed to reproduce the map. In particular, we obtain a
clear understanding of the periodicity conditions by introducing a singular-
isation X ′ of X. Section 1.8 ties the previous discussion in with two other
methods of reconstruction: the Symes’ formula of [6] and the dressing orbit
of the vacuum solution [7]. I give explicit formulas for computing ϕ from
its (hyperelliptic) spectral curve. This is illustrated with the example of the
bubbletons: these are CMC surfaces in R

3 whose Gauss maps have rational
nodal spectral curve. They are the solitons of CMC theory, some of which
were known to geometers of the 19th century (see [21]). The calculations
in section 1.8 are particularly satisfying because they allow us to compute
(using Nick Schmitt’s CMCLab) explicit pictures of some CMC surfaces (see
figures 1 and 2).

Section 2 describes the generalization presented in [20], which constructs
pluri-harmonic maps of R2k into Grk(C

n+1). The key point is that a pluri-
harmonic map ϕ : R2k → Grk(C

n+1) of semisimple finite type arises as a
composition: ϕ = ψ ◦ γ where

R
2k γ→ J(X ′)

ψ→ Grk(C
n+1).

The middle factor is the generalized Jacobian of a singularisation X ′ of the
spectral curveX. The map γ is a homomorphism and the map ψ is algebraic,
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derived from a section of a trivial Grk(C
n+1)-bundle over J(X ′). No proofs

are given here, they can be found in [20]. Nevertheless, I give the details
for the construction of totally equivariant maps, which are characterized as
being those whose spectral curve is the Riemann sphere.

Acknowledgments. I am very grateful to Professors M Guest, R Miyaoka
and Y Ohnita for their generous invitation to participate in the 9th MSJ-
IRI in Tokyo, which was the motivation for this article. I am also grateful
to Martin Kilian and Nick Schmitt for their ideas concerning the explicit
construction of bubbletons, which motivated the discussion in section 1.8.

Notation. If V is a vector space then V t will denote its dual, while V ∗ will
denote V − {0}.

1. Maps into S2.

1.1. Maps of semisimple finite type. Let us start with a harmonic map
ϕ : R2 → S2 of semisimple finite type. To recall what this means we fix a
framing F : R2 → SU2 with F (0) = I i.e. ϕ = F · T if we view S2 ≃ SU2/T
where T is the maximal torus of diagonal matrices. The Lie algebra su2
splits into the vector space sum t+m where t contains all diagonal matrices
and m contains all off-diagonal matrices. Now define the su2-valued 1-form
α = F−1dF : with respect to the splitting of su2 this decomposes into αt+αm.
From these components we construct a C

∗-family of gl2- valued 1-forms

αζ = ζ−1α
(1,0)
m + αt + ζα

(0,1)
m

where ζ ∈ C
∗. The condition that ϕ is harmonic is precisely the condition

that αζ satisfies the Maurer-Cartan equations for all ζ. In addition, it has
two symmetries:

(3) αζ̄−1 = −α†
ζ , α−ζ = ν(αζ),

where ‘†’ denotes the Hermitian transpose and for A ∈ gl2, ν(A) = Adτ ·A
where

τ =

(

1 0
0 −1

)

.

We say that ϕ is of semisimple finite type when:

1a: there exists a smooth function a : R2 → C
∗ and a complex coordi-

nate z on R
2 such that

αm(∂/∂z) = Ad

(

a 0
0 a−1

)

·
(

0 1
1 0

)

;

1b: there exists a smooth map ξζ : R
2 → Cω(C∗, gl2) satisfying

(i) dξζ + [αζ , ξζ ] = 0,
(ii) ξζ also possesses the two symmetries in (3),
(iii) for all z ∈ R

2 there is a positive integer p such that ξζ is a
Laurent polynomial in ζ of order 2p+ 1.
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These properties together imply

(4) ξζ = ζ−2p−1αm(
∂

∂z
) + . . .+ ζ2p+1αm(

∂

∂z̄
).

1.2. The symmetric spectral curve Σ. Define, for each z ∈ R
2,

ΣA(z) = {(ζ, [v]) ∈ C
∗ × P

1 : ξζ(z)v = µv ∃µ ∈ C}.
To maximise the domain of definition here, whenever ξζ is either singular
or zero at ζ0 we replace it by (ζ − ζ0)

mξζ where m is chosen so that this is
regular and non-zero at ζ0. It is clear that this describes an algebraic curve
birationally equivalent to the planar curve with equation µ2 + det(ξζ) = 0.
Moreover ΣA(z) will be smooth (and unramified over the ζ-plane) at all
points for which ξζ (or its renormalisation) is not nilpotent. In particular this
is true over the unit ζ-circle (for the symmetry conditions imply ξ is skew-
Hermitian there). Further, from (4) and 1a we see that ΣA(z) completes to
a curve Σ(z) in P

1×P
1 by adding two smooth points over each of ζ = 0 and

ζ = ∞.
This curve admits a fixed point free involution arising from one of the

symmetries of ξζ . Define

ν̃ : P
1 × P

1 → P
1 × P

1

(ζ, [v]) 7→ (−ζ, [τv])
Then ν̃ induces a fixed point free involution on Σ(z) and the quotient curve
Σ(z)/ν̃ is smooth wherever Σ(z) is.

1.3. The quotient spectral curve X. Here we construct a model of the
quotient curve Σ(z)/ν̃. First, for any ηζ ∈ Cω(C∗, gl2) satisfying ν(ηζ) = η−ζ
define

η̂ = Adκ · ηζ , κ =

(

1 0
0 ζ

)

.

It is easy to check that η̂(−ζ) = η̂(ζ) so that it is a function of λ = ζ2.
Therefore, with an abuse of notation, let us use the notation

(5) ηλ = Adκ · ηζ , λ = ζ2.

Now define

XA(z) = {(λ, [w]) ∈ C
∗ × P

1 : ξλw = µw}
with the same convention at singular points or zeroes of ξλ as earlier. An
easy computation shows that

ξλ = λ−p−1

(

0 a2

0 0

)

+ . . .+ λp+1

(

0 0
−ā2 0

)

.

Therefore XA(z) is completed in P
1×P

1 by adding the points P0 = (0, [1, 0])
and P∞ = (∞, [0, 1]). We will call this complete curve X(z).

Lemma 1. X(z) is isomorphic to the quotient curve Σ(z)/ν̃.
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Proof. Let f : C∗ × P
1 → C

∗ × P
1 be given by f(ζ, [v]) = (ζ2, [κv]). Since

ξλ = Adκ · ξζ this maps ΣA(z) onto XA(z) and exhibits it as an unramified
double cover. Further, it is easy to check that f ◦ ν̃ = f so that ΣA/ν̃ ≃ XA.
Finally, one readily checks that the restriction of f to ΣA extends to Σ with
image X. �

We deduce from this that X(z) is smooth at both P0 and P∞.

Lemma 2. X(0) ≃ X(z) for all z ∈ R
2.

Proof. By 1b we have d(AdFλ·ξλ(z)) = 0, where Fλ is given by F−1
λ dFλ = αλ

and Fλ(0) = I. Hence

(6) AdFλ · ξλ(z) = ξλ(0).

It follows that the map

(7) XA(0) → XA(z); (λ, [v]) 7→ (λ, [F−1
λ v])

is an isomorphism. To see that this extends to the complete curves we follow
[9].

Define

H+ = exp(−zλpξλ(0))Fλ; H− = exp(−z̄λ−pξλ(0))Fλ.
Then

H−1
+ dH+ = −AdF−1

λ · λpξλ(0)dz + αλ
= −λpξλ(z) + αλ

which is polynomial in λ. Therefore H+ is holomorphic in λ. A similar
computation shows that H− is holomorphic in λ−1. Whenever ξλ(0)v = µv
we see that

F−1
λ v = H−1

+ exp(zλpξλ(0))v = ezλ
pµH−1

+ v

so that the line [F−1
λ v] equals [H−1

+ v]. Similarly we can show that [F−1
λ v] =

[H−1
− v]. Now, we also have

ξλ(z) = AdF−1
λ · ξλ(0) = AdH−1

± · ξλ(0)
and it follows that the isomorphism (7) extends to give X(0) ≃ X(z). �

Remark. Notice that this proof shows that H+|λ=0 is upper triangular since
the isomorphism fixes the point (0, [1, 0]). Likewise, H−|λ=0 must be lower
triangular.

1.4. The eigenline bundle E and its dual L. Let Ez denote the eigenline
bundle of ξλ(z): it is the pullback to X(z) of the tautological bundle over
P
1, using the projection (λ, [v]) 7→ [v]. We will denote its restriction to XA

by Ez,A and, to avoid too many superscripts, we will denote the dual bundle
by Lz. The inclusion Ez →֒ P

1 × P
1 × C

2 pulls back the canonical coor-
dinates e1, e2 on C

2 to give two independent globally holomorphic sections
of Lz, which we also denote e1, e2 (or ez1, e

z
2 when necessary). Notice that

e1((0, 1)
t) = 0 and e2((1, 0)

t) = 0 from which it follows that e1 ∈ Γ(L(−P∞))
and e2 ∈ Γ(L(−P0)).
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Our next aim is to show that these sections span the space of global
holomorphic sections of L and this characterizes L. Indeed, one reason
for working over X is that on Σ we do not have such a straightforward
relationship between points and the sections arising from the coordinates
e1, e2. First let A = C[XA], the coordinate ring of XA, let B = C[λ, λ−1] ⊂
A and for any ring R use R〈·〉 to denote an R-module presented by its
generators.

Theorem 1. (i) Γ(LA) = B〈e1, e2〉, (ii) Γ(L) = C〈e1, e2〉, (iii) degL = g+1
(where g is the genus of X).

Proof. Let Y be the completion of the planar curve with equation µ2 +
det(ξλ) = 0, with YA that part of the curve lying over λ 6= 0,∞. Then YA
has coordinate ring AY = C[λ, λ−1, µ] ⊂ A and there is a degree 1 morphism
α : X → Y . Set M = Γ(XA,L) = Γ(YA, α∗L). First we will show that
B〈e1, e2〉 ⊂ M is an AY -submodule. For any v ∈ Γ(YA, α∗E) = Γ(XA, E)
we have v = (e1(v), e2(v))

t and ξλv = µv implies µei(v) = aie1(v) + bie2(v)
for some ai, bi ∈ B. It follows that µei ∈ B〈e1, e2〉. So B〈e1, e2〉 is an
AY -module.

Now it can only be a properAY -module if its localisation at every maximal
ideal p is also proper in the corresponding localisation Mp. But at any
smooth point P ∈ YA, with maximal ideal p, Mp is the stalk LP of L at P ,
and all its proper submodules are contained in LP (−P ) (the local sections
which vanish at P ). But in that case every section in M must vanish at P .
This means that for every v ∈ EP both e1(v) and e2(v) vanish at P , which
is absurd (there is always a non-zero eigenvector). Since YA must have at
least one smooth point we deduce that M = B〈e1, e1〉.
(ii) Given (i) it suffices to show that if λnei ∈ Γ(L) for n ∈ Z then n = 0.
Since e1 does not vanish at P0 and e2 does not vanish at P∞ it suffices to
show that neither λe1 nor λ−1e2 are globally holomorphic. Consider first
λe1: it is globally holomorphic if and only if λe1(v) is holomorphic at P∞

for all locally holomorphic sections v of E about P∞. By definition,

[v] =

[(

1 0
0 ±ζ

)

w

]

where ζ−2p−1ξζw = µζ−2p−1w. We may assume, without loss of generality,
that

w =

(

ā−1 +O(ζ−1)
±ā+O(ζ−1)

)

.

Therefore

v =

(

ζ−1ā−1 +O(ζ−2)
ā+O(ζ−1)

)

.

Hence λe1(v) has a first order pole at P∞. A similar calculation shows for
v a locally holomorphic section about P0 we can take

v =

(

a+O(ζ)
ζa−1 +O(ζ2)

)
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and therefore λ−1e2(v) has a first order pole at P0.
(iii) Since λ has divisor 2P0 − 2P∞, (i) and (ii) imply Γ(L(−2P0)) = 0. So
applying the Riemann-Roch formula gives degL ≤ g + 1. Now we show
degL ≥ g + 1. For n any suitably large positive integer L(2nP∞) must be
non-special so that

dimΓ(L(2nP∞)) = degL+ 2n + 1− g.

But
C〈e1, e2, λe1, λe2, . . . , λne1, λne2〉 ⊂ Γ(L(2nP∞))

so degL+ 2n+ 1− g ≥ 2n + 2. �

1.5. The real structure of Γ(L). An important property of Γ(L) is that
possesses a Hermitian inner product: this comes from a reality condition on
L and is essential since we intend to identify PΓ(L) with S2 ∼= CP

1 as a
Hermitian symmetric space. This reality condition arises as follows.

The real symmetry ξλ̄−1 = −ξ†λ induces a real involution ρ on X for

which ρ∗λ = λ−1 and ρ∗µ = −µ. Notice that, since ξλ is skew-Hermitian
over |λ| = 1, µ is pure imaginary there so ρ fixes all points over |λ| = 1 -
this will prove to be important later. Consequently the eigenline bundle E
also satisfies a reality condition.

Proposition 1. ρ∗E ≃ L(−R) where R is the ramification divisor of λ :
X → P

1.

Proof. Since ρ∗ξλ = −ξtλ sections of ρ∗E correspond to solutions of

ξtλw = µw.

Take any proper open subset U ⊂ X for which U = λ−1 ◦ λ(U), and let
v : U → E be a trivialising section. If σ denotes the hyperelliptic involution
on X then σ∗µ = −µ and clearly v, σ∗v are linearly independent at P ∈ X
if and only if P is not a ramification point. Take V to be the matrix with
columns v, σ∗v, then we have det(V ) vanishing only at ramification points.
Define W = det(V ).V −1t, then W is holomorphic in U and

ξtλW =W

(

µ 0
0 −µ

)

.

It is easy to check that the columns of W are given by w,−σ∗w where
e1(w) = e2(σ∗v) and e2(w) = −e1(σ∗v). Therefore w corresponds to a triv-
ialising section for ρ∗E over U . Now consider the injective homomorphism
of OU -modules

OU 〈w〉 → Hom(OU 〈v〉,OU )
f.w 7→ (h.v 7→ fh.wtv)

for f, h ∈ OU . Since wtv = det(V ) we see that the induced sequence of
sheaves is

0 → ρ∗E → L → OR → 0

where OR is the skyscraper sheaf for the divisor R. Therefore ρ∗E ≃ L(−R).
�
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Consequently we have L ⊗ ρ∗L ≃ OX(R). The inner product on C
2

corresponds (at least over the unit circle) to the section

(8) e1 ⊗ ρ∗e1 + e2 ⊗ ρ∗e2

(which maps (v,w) to ρ∗v
tw). Up to scaling this corresponds to an inner

product on Γ(L) determined in the following manner.
We first take any s ∈ Γ(L) to identify L with the divisor line bundle

OX(D) where D is the divisor of zeroes of s. Second we fix a rational
function f with divisor D + ρ∗D − R for which ρ∗f = f and f is positive
over |λ| = 1 (this is always possible since ρ fixes all points over the unit
circle). Now we define

(9)
h : Γ(L)× Γ(L) → C;

h(s1, s2) =
1
2

∑2
j=1 f(Oj)(s1/s)(Oj)ρ∗(s2/s)(Oj)

where O1, O2 are the two points over λ = 1. The proper interpretation of
the right hand side is in terms of the trace map Tr : OX(R) → C which I
will not explain in detail here (see, for example, [26]). But it is worth noting
for future reference that this inner product clearly makes the subspaces
Γ(L(−O1)),Γ(L(−O2)) ⊂ Γ(L) orthogonal.

1.6. What the frame does. Let us introduce Γ̂(·) for spaces of analytic

sections and let Â denote the ring of analytic functions on XA while B̂
denotes the analytic functions on the punctured λ-plane P

1
λ \ {0,∞}. The

map

Γ̂(Ez,A) → Γ̂(E0,A); v 7→ Fλv

is clearly an isomorphism of Â-modules. Therefore it corresponds to a family
of trivialising sections

θz ∈ Γ̂(E0,A ⊗ Lz,A).
Let J(X) denote the Jacobian of X - the abelian variety of isomorphism
classes of line bundles of degree zero. If JR(X) denotes the real subgroup
of degree zero line bundles L for which ρ∗L ≃ L−1 then we deduce from the
previous section that E0 ⊗ Lz belongs to JR(X) for all z.

Proposition 2. (i) Define L : R2 → JR(X) by Lz = E0 ⊗ Lz. Then L is
R-linear (i.e. a homomorphism of real abelian groups). (ii) θz exp(zλ

pµ) is
holomorphic and non-vanishing over P0 while θz exp(z̄λ

−pµ) is holomorphic
and non-vanishing over P∞.

Proof. Observe that (ii) implies (i) since we deduce from it that Lz corre-
sponds to the transition functions exp(zλpµ) and exp(z̄λ−pµ) patching from
XA to U0 and U∞ respectively, where the latter are open neighbourhoods
of P0 and P∞ respectively.

To prove (ii) we recall from the proof of lemma 2 that if v0 is a holo-
morphic section of E0 about P0 then F−1

λ v0 = H−1
+ exp(zλpµ)v0 so that

exp(−zλpµ)F−1
λ v0 is a holomorphic section of Ez about P0. But F−1

λ v0
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corresponds to v0 ⊗ θ−1
z so tensoring with exp(−zλpµ)θ−1

z preserves holo-
morphicity about P0. A similar argument using H− about P∞ proves the
second part of (ii). �

Let Lz,A denote the restriction to XA of Lz. We want to make explicit
the representation

F : Γ̂(LA) → B̂ ⊗ gl2

which gives us F(θ) = Fλ. It arises from the composite isomorphism

(10) ǫz : Γ̂(Ez,A(R)) → B̂ ⊗ Γ(Lz)t → B̂ ⊗ C
2.

The second arrow is just the identification Γ(Lz)t → C
2 determined by ez1, e

z
2.

The first arrow is the B̂-module isomorphism dual to B̂ ⊗ Γ(L) ≃ Γ̂(LA),
from theorem 1. This uses the fact, implicit in the proof of proposition 1,
that λ∗L is dual to λ∗E(R). It follows that to any φ ∈ Γ̂(LA) there is some

F(φ) ∈ B̂ ⊗ gl2 so that the following diagram commutes:

(11)
Γ̂(Ez,A(R)) φ→ Γ̂(E0,A(R))

ǫz ↓ ↓ ǫ0
B̂ ⊗ C

2 F(φ)→ B̂ ⊗ C
2.

Next we will show that θ is almost completely determined by it’s behaviour
at the points P0, P∞. First observe that from (4) we have

µ2 = − det ξζ = ζ−4p−2 + . . .+ ζ4p+2 = λ−2p−1 + . . . + λ2p+1.

Since ρ∗µ = −µ whereas ρ∗ζ = ζ−1 we find, with the right sign choice for
ζ, µ = ζ−2p−1 + . . . − ζ2p+1. Therefore λpµ − ζ−1 is holomorphic about P0

while λ−pµ + ζ is holomorphic about P∞. Consequently, as a corollary of
proposition 2 we have:

Corollary 1. θz is determined up to sign, amongst trivialising sections
of LA, by the properties that: (a) θz exp(zζ

−1) is holomorphic and non-
vanishing over P0 while θz exp(−z̄ζ) is holomorphic and non-vanishing over
P∞ and, (b) det(F(θz)) = 1.

Proof. If φ is any other trivialising section with these properties then φθ−1
z is

a globally holomorphic function and therefore a constant, k say. But clearly
det(F(kθz)) = k2 so that k = ±1. �

Remark. The unitary nature of F(θz) on the unit circle is a reflection of the
fact that ρ∗θ = θ−1.

Finally, let us use this corollary to display a simple characterisation for the
map L. Since it is linear it is completely determined by dL0(∂/∂z) which

lies in T 1,0
1 J(X) (here 1 denotes the identity in J(X)). By the corollary

above L(z) corresponds to the cohomology class [c(z)] in H1(X,O∗) for the
1-cocycle

(12) c(z) = {(ezζ−1

,XA, U0), (e
−z̄ζ ,XA, U∞)}
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for the open cover XA, U0, U∞, where now U0, U∞ are (disjoint) parameter
discs (i.e. domains for ζ, ζ−1). Therefore

∂[c]

∂z
|z=0 = [(ζ−1,XA, U0), (1,XA, U∞)] ∈ H1(X,O).

Now recall the isomorphism H1(X,O) ≃ Γ(ΩX)
t: it identifies ∂[c]/∂z with

the map f : ω 7→ resP0
ζ−1ω for ω ∈ Γ(ΩX). But now observe that

resP0
ζ−1ω = (ω/dζ)(P0) =

∂

∂ζ

∫ ζ

P0

ω.

Hence f = dAP0
(∂/∂ζ) where AP0

: X → J(X) is the Abel map with base
point P0. Thus we learn:

Lemma 3. The linear map L : R2 → JR(X) is uniquely determined by the
property that dL0(∂/∂z) = dAP0

(∂/∂ζ).

1.7. Periodicity conditions. We have seen that the non-conformal doubly
periodic harmonic map ϕ : R2 → S2 yields us spectral data (X,λ,L) and it
is easy to see how to reverse this procedure to reconstruct the map from this
data. We first construct the linear map L : R2 → JR(X) given by lemma 3
and define Lz = L⊗Lz. By theorem 1 Γ(Lz) comes equipped with a frame
ez1, e

z
2 determined by the points P∞, P0: this frame is chosen to be unitary

according to the trace inner product described above. With the frame we
recover the map F in (11). Now we equip Lz with the unique (up to sign)
trivialising section θz over XA given by corollary 1. Thus we obtain the
extended frame Fλ = F(θz) and the map ϕ is recovered as F1 ◦ [1, 0] where
[1, 0] ∈ CP

1.
However, we do not need the frame itself to obtain ϕ: it is clear that each

line ϕ(z) ∈ CP
1 corresponds to the line Γ(Lz(−P∞)) ∈ PΓ(Lz) where PΓ(Lz)

is identified with CP
1 using θz. There is an invariant way of describing

this identification which avoids explicit reference to θz and this helps us
understand the periodicity conditions. To obtain this let us first consider
the expression for ϕ in homogeneous coordinates: it can be written as

ϕ = [(e01f
z
1 θz)|λ=1, (e

0
2f

z
1 θz)|λ=1],

where f zj ∈ Γ(Ez,A(R)) is the B-module generator dual to to ezj . Now it is

clear that if we choose some other (unitary) basis v1, v2 of Γ(L) we obtain,
up to isometry of S2, the same map. In particular, following the remarks
made earlier, we could choose this new basis such that v1 vanishes at O2

and v2 vanishes at O1. In that case

ϕ = [(f z1 θz)|O1
, α(f z1 θz)|O2

],

where α : L|O2 → L|O1 is the fibre identification induced by the choice of
v1, v2 (i.e. α(v2|O2

) = v1|O1
).

Recall that up to scaling f1 is determined purely by the vanishing of e1 at
P∞. It follows that ϕ has periodicity ϕ(z + τ) = ϕ(z) precisely when both
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equations L(z + τ) = L(z) and

(θz+τθ
−1
z )|O2

= (θz+τθ
−1
z )|O1

are satisfied. The latter condition is more simply interpreted as saying that
the fibre identification Lz|O2 → Lz|O1 given by θz|O2

7→ θz|O1
is τ -periodic.

This identication determines at each z a line bundle L′
z over X

′, the singular
curve obtained from X by identifying O1 with O2 to obtain a node. Thus
we have a τ -periodic map L′ from R

2 to J(X ′), the (generalized) Jacobi
variety for X ′. Recall that the pullback of line bundles along X → X ′

induces a surjective homomorphism π : J(X ′) → J(X) whose fibre at L
is L|O2 ⊗ L−1|O1

∼= C
∗. In fact ρ∗L′ ∼= L′−1 so L′ takes values in a real

subgroup JR(X
′) of J(X ′). It can be shown that, when X is smooth of

genus g, this group is a real compact torus of dimension g + 1.

Lemma 4. The map L′ : R
2 → JR(X

′) defined above is linear and is
uniquely determined by the property that dL′

0(∂/∂z) = dA′
P0
(∂/∂ζ), where

A′
P0

: X ′ − {O} → J(X ′) is the Abel map for X ′ based at P0.

Proof. Since θz arises from the 1-cocycle c(z) in (12) L′
z has 1-cocycle

c′(z) = {(ezζ−1

,X ′
A, U0), (e

−z̄ζ ,X ′
A, U∞)}.

Now recall (from e.g. [26]) that

J(X ′) ≃ Γ(Ω′
X)

t/H1(X − {O1, O2},Z),
where Ω′

X is the sheaf of regular differentials on X ′: each such differential
can be identified with a meromorphic differential on X whose only poles are
simple ones at O1 and O2 i.e. Ω′

X
∼= ΩX(O1 +O2). The Abel map for X ′ is

defined by

A′
P0

: X ′ − {O} → J(X ′); P 7→
∫ P

P0

,

where O is the nodal point lying under O1, O2. To compute dL′
0 we simply

repeat the computation prior to lemma 3 using c′(z). �

Corollary 2. The harmonic map ϕ : R2 → S2 with spectral data X,λ,L
has period τ if and only if the related map L′ : R2 → JR(X

′) has period τ .
This depends only on the data X,λ.

In particular, if X has genus g ≤ 1 the harmonic map is necessarily dou-
bly periodic since JR(X

′) is topologically S1 or S1 × S1. These examples
yield the Gauss maps of all Delaunay surfaces in R

3 (i.e. the constant mean
curvature surfaces of revolution) with the case g = 0 corresponding to the
Gauss map of the cylinder. A more interesting class of singly periodic exam-
ples are the Gauss maps of the “bubbletons”. The bubbletons are periodic
CMC surfaces whose ends are asymptotic to the standard cylinder (see figure
2). They get their name because they correspond to soliton solutions of the
sinh-Gordon equation, which governs the behaviour of the metric. As with
KdV solitons, these solutions have rational nodal spectral curves. Using the
theory above we can characterize these spectral curves as follows.
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Proposition 3. Let X be the rational nodal curve of arithmetic genus g =
2r with equation

(13) µ2 = λ
r
∏

j=1

(λ− aj)
2(1− ajλ)

2, aj ∈ R, 0 < aj < 1.

Then X,λ is the spectral data for a singly periodic non-conformal harmonic
map ϕ : R2 → S2 if and only if there exist positive integers p0, p1, . . . , pr for
which

(14) aj = (
pj
p0

±
√

p2j
p20

− 1)2, j = 1, . . . , r.

Proof. Let us set ζ =
√
λ: this is a rational coordinate on X. Thus we iden-

tify X with the singularization of the Riemann sphere Pζ with the points

±ζj identified, where ζ2j = aj and ζ2r+j = a−1
j for j = 1, . . . , r. Notice that

ζj ∈ R since aj > 0. X ′ is the further singularization obtained by addition-
ally identifying ±ζ0, where ζ0 = 1. We may assume the real involution is
ρ∗ζ = ζ̄−1. A basis for Γ(Ω′

X) is given by

ωj =
1

2πi
(

1

ζ − ζj
− 1

ζ + ζj
)dζ, j = 0, . . . , 2r,

NowX ′ is obtained from its normalisation (a smooth curve of genus 2r+1) by
shrinking half the homology generators to zero, henceH1(X

′,Z) is generated
by γj, j = 0, . . . , 2r where each of these is the boundary of a small positively
oriented disc containing ζj. It follows that

∮

γj
ωk = δjk. The real group

JR(X
′) is isomorphic to

{ω ∈ Γ(Ω′
X) : ρ∗ω = −ω̄}t/{γ ∈ H1(X

′,Z) : ρ∗γ ∼ −γ}
which we will write more simply as V t/Γ. It is not hard to check that a
basis for V is given by

v0 = ω0, vj =
1

2
(ωj + ωr+j), vr+j =

i

2
(ωj − ωr+j), j = 1, . . . , r

and generators for Γ ⊂ V t can be given by
∮

γ0

,

∮

γj+γr+j

, j = 1, . . . , r.

With respect to this basis for V the dual isomorphism V t ∼= R
2r+1 identifies

the generators for Γ with the first r + 1 standard basis vectors for R2r+1.
The map L′ : R2 → JR(X

′) described above is covered by

ℓ : R2 → V t; ℓ(z, z̄) = z res0ζ
−1 − z̄ res∞ζ

where e.g. res0ζ
−1 : V → C takes the residue of ζ−1ω at ζ = 0. In terms of

the dual basis for V t this has coordinates

ℓ : R2 → R
2r+1; ℓ(z, z̄) = zU + z̄Ū
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where U ∈ C
2r+1 has coordinates

U =
−1

2πi
(2, . . . , α−1

j + αj , . . . , i(α
−1
j − αj), . . .)

where α2
j = aj. The map is periodic precisely when there exists z ∈ C for

which
zU + z̄Ū = (p0, p1, . . . , pr, 0 . . . , 0), pj ∈ Z.

If we write z = x+ iy then these 2r + 1 equations become

2y = −πp0, y(αj + α−1
j ) = −πpj, x(αj − α−1

j ) = 0, j = 1, . . . , r.

These equations have a solution for aj < 1 if and only if x = 0 and

α2
j −

2pj
p0
αj + 1 = 0.

�

Remark. The reader may be wondering why we only consider aj ∈ R. The
more general case of complex nodes also leads to periodic maps ϕ : R2 → S2.
The conditions are that, writing aj = r2j e

2θj , there must be positive integers
p0, . . . , pr for which

r2j −
2pj
p0

cos(θj)rj + 1 = 0.

However, these are not the Gauss maps of periodic CMC surfaces unless θj =
0. Indeed, it is not obvious even then that we obtain periodic CMC surfaces
since none of the discussion above accounts for the extra condition that
the CMC surface must also have a period when its Gauss map does. That
this happens when (14) is satisfied follows from an argument I learned from
Martin Kilian and Nick Schmitt, which exploits the dressing construction.
Unfortunately to describe this closing argument would take us too far afield,
although I will say something about the dressing construction in the next
section.

1.8. Two reconstructions of the harmonic map: Symes’ method

and dressing the vacuum. I know of three approaches to reconstructing
the harmonic map from its spectral data. The first of these, which I will
describe in a more general context later, boils down to writing the map
down in terms of the θ-functions for X ′ (cf. [1]). The other two methods
use a loop group and require one to be able to perform a certain loop group
factorization. Until recently this had only theoretical interest, but with the
advent of Nick Schmitt’s CMCLab software it is now possible to perform
explicit calculations involving the (approximate) factorization, so I want to
take this opportunity to explain how to reproduce the map ϕ : R2 → S2

(and hence its associated family of CMC surfaces) from its spectral data.
Before I begin we must recall some fundamentals about the application of
loop groups to the construction of harmonic maps.

First, set GC = SL2(C) and let G denote its compact real form SU2.
For ǫ ∈ R

+ with 0 < ǫ < 1 we let C be the union of circles {ζ : |ζ| =
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ǫ or |ζ| = ǫ−1} on the Riemann sphere C ∪ {∞} and consider it as the
common boundary of the two open sets

E = {ζ : ǫ < |ζ| < ǫ−1}, I = {ζ : |ζ| < ǫ or |ζ| > ǫ−1}.
We will work with the loop group (of “twisted loops”)

ΛCG = {Cω maps g : C → GC |gζ̄−1 = g†ζ , ν(gζ) = g−ζ}.
This loop group contains in particular ΛEG, the subgroup of those g ∈ ΛCG
which extend holomorphically into E, and ΛIG, the subgroup of those g ∈
ΛCG which extend holomorphically into I such that g0 is upper triangular
with positive real diagonal entries. It is well known (see [16]) that every
g ∈ ΛCG factorizes uniquely into gEgI where gE ∈ ΛEG and gI ∈ ΛIG: this
is sometimes called the Iwasawa decomposition for ΛCG.

The relevance of these groups to our harmonic maps can be encapsulated
in the following theorem. First, notice that the simplest non-conformal map
ϕ : R2 → S2, which has been dubbed the “vacuum solution”, maps onto a
great circle and is framed by the homomorphism

F (0) : R2 → SU2; F
(0) = exp(zA− z̄A); A =

(

0 1
1 0

)

.

This has extended frame

F
(0)
ζ : R2 → ΛEG; F

(0)
ζ = exp(ζ−1zA− ζz̄A).

Theorem 2. [6, 7] Let ϕ : R2 → S2 be a non-conformal harmonic map of
finite type with polynomial Killing field ξζ(z), in the form (4).

(1) ϕ has an extended frame given by

Fζ = exp(zζ2pξζ(0))E .

This is “Symes’ formula” [6].
(2) For some 0 < ǫ < 1 there exists gζ ∈ ΛIG so that ϕ has an extended

frame given by

Fζ = (gζF
(0)
ζ )E.

This is “dressing the vacuum solution” [7].

Since in both formulae the frame satisfies the same Maurer-Cartan equa-
tions with Fζ(0) = I, each method gives the same extended frame. Now I
will describe how to compute the polynomial Killing field ξζ and the dress-
ing matrix gζ corresponding to the spectral data X,λ,L for a particularly
amenable choice of L.
Proposition 4. Let X,λ correspond to the curve with affine equation

y2 = λ

g
∏

j=1

(λ− aj)(1 − ājλ); 0 < |aj | < 1.
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and let L = OX(R+) where R+ is the divisor P0 +
∑g

j=1Rj for λ(Rj) = aj .

Then the non-conformal map ϕ : R2 → S2 with spectral data X,λ,L arises
from:

(1) Symes’ formula using ξζ(0) = ηζ − η†
ζ̄−1 where

(15) ηζ =

(

0 ζ
∏g
j=1(1− ājζ

2)

ζ
∏g
j=1(ζ

2 − aj) 0

)

;

(2) dressing the vacuum solution by

(16) gζ =

(

h−1/4 0

0 h1/4

)

; h =

g
∏

j=1

(
ζ2 − aj
1− ājζ2

).

Proof. 1. Given an orthonormal basis e1, e2 for Γ(L) we obtain a B-module
morphism

K : {f ∈ C[XA] : ρ∗f = −f} → {ξζ(z) : dξ = [ξ, α], ξζ̄−1 = −ξ†ζ}
in which each ξ is algebraic (indeed, a Laurent polynomial) in λ. In fact
this map is an isomorphism for real algebraic ξ [19]. It arises from the
commutative diagram

Γ̂(Ez,A(R))
×f→ Γ̂(Ez,A(R))

ǫz ↓ ↓ ǫz
B̂ ⊗ C

2 ξ(f)→ B̂ ⊗ C
2

This gives ξλ(z) = K(f) for each z, where we recall from (5) that ξλ =
Adκ · ξζ . Since θfθ−1 = f it follows, by combining this diagram and the
diagram (11), that ξ(0) = Fξ(z)F−1 whence dξ = [ξ, α]. For the purposes
of Symes’ formula we want to compute K(f) at z = 0 for f = y−ρ∗y. Since

K(ρ∗y) = ρ∗K(y)
t

it suffices to compute K(y) at z = 0. A simple computation shows that with
respect to the trace inner product (9) Γ(OX(R+)) has an orthonormal basis
given by

(17) e1 =
y

λ
∏g
j=1(λ− aj)

, e2 = 1.

Here we are identifying holomorphic sections of L with rational functions
on X whose divisor of poles is no worse than R+. Notice that e1 generates
Γ(L(−P∞)) while e2 generates Γ(L(−P0)). Now K(y) is the matrix

(

α β
γ δ

)

where

ye1 = αe1 + βe2, ye2 = γe1 + δe2
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so that at z = 0

K(y) =

(

0
∏g
j=1(1− ājλ)

λ
∏g
j=1(λ− aj) 0

)

.

Finally, let ηζ be the twisted loop Adκ−1 ·K(y) to obtain the formula (15).
2. Let us consider the geometric meaning of the equation (16). If we write

these loops in their untwisted form then gλF
(0)
λ = Fλbλ where Fλ extends

holomorphically to an annulus on the λ-sphere (which we will call E despite
the abuse of notation) and bλ extends holomorphically to a pair of discs
about λ = 0,∞ (which we will call I) and is upper triangular at λ = 0.
A little thought shows that the columns of F−1t represent ez1θ

−1, ez2θ
−1,

thought of as sections of the rank two vector bundle λ∗L over E, with
respect to the global frame e01, e

0
2. Let φE denote the trivialisation of λ∗L

determined by this global frame, then the equation g−1t
λ b−1t

λ,z=0 = I expresses

the fact that there is some local trivialisation φI for λ∗L over I for which
the transition relation on E ∩ I is

g−1tφI = φE .

Therefore gtλ is the matrix whose columns are φI(e
0
1), φI(e

0
2). Now we recall

from [15] that φI is obtained by direct image from a trivialisation of L over
λ−1(I) in the following way. Let sI be a non-vanishing holomorphic section
of L over λ−1(I). By definition Γ(I, λ∗L) = Γ(λ−1,L) and sI induces the
trivialisation

φI : Γ(I, λ∗L) → Hol(I,C2); s 7→ (s1, s2)

where s/sI = s1(ζ
2) + ζs2(ζ

2). Any trivialisation φI obtained this way and
which gives det(gλ) = 1 will provide a suitable matrix gλ (the freedom here
is right multiplication of gλ by any element of ΛIG which commutes with

F
(0)
λ for all z). To calculate gλ we let e1, e2 be the basis (17) and initially

take sI = e1: this is appropriate since as a function it has a simple pole
at P0 and does not vanish at P∞, therefore it represents a non-vanishing
section of L over I provided I is small enough. Now we write

e1/e1 = 1 + ζ.0, e2/e1 = 0 + ζ.

g
∏

j=1

(
ζ2 − aj
1− ājζ2

)1/2.

However, this choice of sI does not give det(gλ) = 1, so it remains to rescale
sI by the appropriate non-vanishing function to obtain (16). �

Remark 1. For simplicity define η̄ζ = −η†
ζ̄−1 . It suffices to use η̄ζ instead

of ξζ(0) in Symes’ formula, since [η, η̄] = 0 and exp(zζ2gηζ)E = I (since ηζ
is polynomial in ζ), therefore exp(zζ2gξζ(0))E = exp(zζ2gη̄ζ)E . Moreover,
by combining the extended frame with the Sym-Bobenko formula [2, 14]
we can produce CMC tori once we know a choice of branch points for the
spectral curve which satisfies the double periodicity condition (not just the
periodicity condition above, which only makes the Gauss map periodic, but
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Figure 1. Wente torus (left), twisty torus (right).

the full CMC periodicity condition described in [1]). The following examples
for a genus two curve are due to Matthias Heil (private communication):

a1 = 0.1413 + 0.1018i, a2 = 0.1413 − 0.1018i, (Wente torus);
a1 = 0.124 + 0.1485i, a2 = 0.4387 − 0.071i (twisty torus).

The corresponding CMC tori are drawn in figure 1.
Remark 2. In fact we can use the dressing construction to produce all har-
monic maps with spectral data X,λ. For even though the dressing matrix
(16) corresponds to the line bundle OX(R+) every other line bundle satis-
fying the reality condition is of the form OX(R+)⊗L where L ∈ JR(X). It
was shown in [17] that the full family of these is swept out by the “higher
flows” described in [7]. That means an extended frame for the harmonic
map with data X,λ,OX (R+)⊗ L is given by dressing the vacuum by

gζ exp(

∞
∑

j=1

(tjζ
jAj − t̄jζ

−jA−j))

for some sequence tj ∈ C. Moreover, for a map of finite type only finitely
many of the higher flows are independent, so there is no need for an infinite
sum here. It can be shown that it suffices to have only t1, t3, . . . , t2g−1

taking any values and all other parameters zero: the first flow t1 is just a
z-translation of the surface domain.
Remark 3. By combining proposition 3 with proposition 4 we can compute
the one and two bubbletons in figure 2. These have respectively r = 1, g = 2
and r = 2, g = 4. Using the previous remark we obtain a real g-parameter
family of deformations of these surfaces. Each bubble can be moved relative
to any other (or the cylinder) by a translation along the cylinder or a rotation
about its circumference. Thus each bubble contributes two real parameters:
there are r bubbles altogether. This demonstrates that JR(X

′) ∼= (R×S1)r.
It is interesting to note that we can also think of the bubbletons as being
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Figure 2. One bubbleton and two bubbleton.

constructed by dressing the vacuum by a rational loop on the ζ-sphere. We
can re-scale the matrix gζ in (16) so that for a nodal curve (13) it becomes

(18)

r
∏

j=1

(

ājζ
2 − 1 0
0 ζ2 − aj

)

, r = g/2.

This dressing matrix produces the same surface and resembles a product of
Bäcklund transforms in the sense of [28]. Although proposition 3 only proves
that the Gauss map of the CMC surface is periodic (given the conditions
(14) on each aj) it turns out that the CMC surface itself is periodic. This

can be shown by examining the effect on the monodromy matrix of F
(0)
ζ of

dressing by any factor in the product (18). This approach was explained to
me by Martin Kilian and Nick Schmitt. Their approach also explains the
geometric significance of the positive integers p0, . . . , pn appearing in (14).
The integer p0 determines the number of times the cylindrical end of the
bubbleton wraps around itself, while pj is the number of “lobes” the j-th
bubble possesses.

2. Harmonic and pluri-harmonic maps into Grk(C
n+1).

Let k ≤ (n+ 1)/2. Here I will briefly recount the theory given in [20] for
constructing pluri-harmonic maps ϕ : R2k → Grk(C

n+1) which generalizes
the construction given above (recall that a map is pluri-harmonic if it is
harmonic on any holomorphic curve: here R

2k is given the usual complex
structure). At the end I will illustrate this with the example X ∼= P

1.
To begin, the spectral data here consists of a (smooth, we will assume)

compact Riemann surfaceX (of genus g) with real involution ρ together with
a degree n + 1 function λ on X and a line bundle L over X. We require:
ρ∗λ = λ−1; the ramification divisor R of λ has no support over |λ| = 1; and
ρ fixes every point over |λ| = 1. In that case R = R+ + ρ∗R+, where R+

is the divisor of ramification over |λ| > 1. We can choose L to satisfy the
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reality condition ρ∗L ∼= Lt(R) by taking any element of the compact real
connected g-dimensional torus

N = {OX(R+)⊗ L : L ∈ JR}

where JR is the identity component of {L ∈ J(X) : L ∼= ρ∗L
−1}. It can

be shown that for any such bundle λ∗L is a trivial rank n + 1 bundle so
dim(Γ(L)) = n+1. Further, the trace pairing equips Γ(L) with a Hermitian
inner product.

As before, the geometry of the construction is best understood by working
with the singularisation X ′ of X obtained by identifying the n + 1 points
O1, . . . , On+1 lying over λ = 1 together to obtain a nodal singularity O on
X ′. A line bundle L′ over X ′ is best thought of as a line bundle L over X
equipped with a linear identification of the fibres over O1, . . . , On+1: we can
think of this as assigning a non-zero element to each stalk L|Oj. In Pic(X ′)
(the algebraic group of all holomorphic line bundles over X ′) we distinguish
the real variety

N ′ = {OX′(R+)⊗ L′ : L′ ∈ J ′
R},

where J ′
R = {L′ ∈ J(X ′) : L′ ∼= ρ∗L′−1}. Let π : Pic(X ′) → Pic(X) be

the natural epimorphism for which π(L′) = L. An element of Γ(L′) is a
global section of L which “takes the same value” at each Oj using the fibre
identification with which L′ is equipped. For L′ ∈ N ′, since λ∗L is trivial,
there is no non-zero global section of L which vanishes at every Oj , therefore
dim(Γ(L′)) = 1. Thus any non-zero global section of L′ gives us a convenient
representation for the fibre identification carried by L′.

Over N ′ there exists a natural rank n + 1 bundle E′ whose fibre at L′

is Γ(L). For any k the Grassmann bundle Grk(E
′) possesses a canonical

trivialisation given pointwise as follows. Let

[e1 ∧ . . . ∧ ek] ∈ Grk(E
′).

By taking any non-zero sL ∈ Γ(L′) we can identify

ej 7→ vj = (
ej |O1

sL|O1
, . . . ,

ej |On+1

sL|On+1
) ∈ C

n+1

and this is projectively dependent only on L′. Thus we have a natural map

[e1 ∧ . . . ∧ ek] 7→ [v1 ∧ . . . ∧ vk] ∈ Grk(Cn+1).

The relevance of this is that by taking a suitable section of Grk(E
′) and

applying this trivialisation we obtain a map J ′
R
∼= N ′ → Grk(C

n+1) whose
restriction to suitable subgroups of J ′

R is (pluri)-harmonic. This result is
true for any choice of isomorphism J ′

R
∼= N ′, so in fact we obtain not just

one map but a family of them - these correspond to the deformations made
available by the higher flows discussed earlier.

Now I must explain which section of Grk(E
′) yields (pluri)-harmonic

maps. Although we could discuss the construction of maps of any isotropy
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order we will stick with the simplest case of lowest isotropy order i.e. non-
conformal maps. For this we take λ to have (at least) k double zeroes
P1, . . . , Pk. Consequently the divisor of λ has the form

(λ) = 2P1 + . . . + 2Pk + E0 − 2Q1 − . . . 2Qk − E∞

where E0, E∞ are positive divisors of degree n+1− 2k. Let D∞ denote the
positive divisor Q1 + . . . Qk + E∞ of degree n + 1 − k, then D∞ gives us a
section of Grk(E

′) by assigning to each L′ the k-plane Γ(L(−D∞)). Thus
by our canonical trivialisation we have map

ψ : J ′
R
∼= N ′ → Grk(C

n+1).

Now let γ : R2k → J ′
R be the real homomorphism uniquely determined up

to scalings by:
∂γ/∂zj = ∂A′

Pj
/∂ζPj

where z1, . . . , zk denote complex coordinates on R
2k, ζPj

is a local coordinate
about Pj and A′

Pj
denotes the Abel map for X ′ with base point Pj .

Theorem 3. [20] The map ϕ = ψ ◦ γ : R2k → Grk(C
n+1) given above is

pluri-harmonic. Indeed, the harmonic map obtained by restriction of ϕ to
the complex line with tangent

∑

aj∂/∂zj is harmonic: it is also nowhere
conformal iff

∑

a2j 6= 0.

Remark. According to [17, 18] this theorem accounts for all non-conformal
harmonic maps ϕ : R

2 → CP
n of semisimple finite type (and therefore

all non-conformal tori). Indeed I believe it will account for all maps of
semisimple finite type into Grk(C

n+1) using a similar argument. The main
unanswered question is to what extent the non-conformal (or more generally,
non-isotropic) harmonic tori in Grk(C

n+1) are accounted for by the tori of
semisimple finite type. Some progress has been made in this direction (see
[29]) but the problem is not yet settled.

2.1. Explicit formulae in terms of Riemann θ-functions. In the con-
struction above there is, up to scalings, a natural basis e1, . . . , ek for the
k-plane Γ(L(−D∞). For each j = 1, . . . , k let Dj be the positive divisor
D∞ +

∑

k 6=j Qj, which has degree n, and notice that for any j the divi-

sor of poles of λ is Dj +Qj. Since λ∗L is trivial the subspace Γ(L(−Dj) ⊂
Γ(L(−D∞)) is one dimensional and L(−Dj) is non-speciali of degree g. This
means we can obtain a non-zero section of it using Riemann’s θ-function. To
obtain a formula for ψ we then have to understand the behaviour of the fibre
identifications. It turns out that these can be incorporated by pulling the
θ-line bundle over J(X) back to J(X ′) using π. An explicit formula for ψ is
then obtained as follows. Throughout this discussion we take L = OX(R+):
any other choice of L simply amounts to a translation in the argument of
the θ-function with no loss of generality.

We know that we can make identifications

(19) J(X ′) ∼= H0(ΩX(o))
t/H1(X \ o,Z) ≃ C

g+n/Λ′,
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where ΩX(o) is the sheaf of mermorphic differentials on X with divisor of
poles no worse than o = O1 + . . . + On+1 and Λ′ is a lattice on 2g + n
generators. We choose coordinates so that π : J(X ′) → J(X) is covered by
the map

π : Cg+n → C
g; W̃ = (w1, . . . , wg+n) 7→W = (w1, . . . , wg).

Now let us define θ0(W̃ ) = θ(W ) and for j = 1, . . . , n define

θj(W̃ ) = exp(2πiwg+j)θ(W +A(Oj+1 −O1)),

where θ is the classical Riemann θ-function on C
g corresponding to the

induced isomorphism J(X) ≃ C
g/π(Λ′). Each of θ0, . . . , θn represents a

global holomorphic section of the pullback by π of the θ-line bundle over
J(X) [20].

For l = 1, . . . , k let D̃l be the unique positive divisor (of degree g) in the
linear system of L(−Dl) and let κl ∈ C

g be the appropriate translation for

which θ(A(P ) + κl) has divisor of zeroes D̃l. Finally, let fl be a rational
function on X with divisor

(fl) = R+ −Dl − D̃l

so that fl(P )θ(A(P ) + κl) has divisor R+ −Dl.

Proposition 5. [20] Let vl : C
g+n → C

n+1 be defined by

vl(W̃ ) = (fl(O1)θ0(W̃ + κl), . . . , fl(On+1)θn(W̃ + κl))

Then, taking the base point OX′(R+) on N ′ for the identification J ′
R
∼= N ′,

the map ψ : J ′
R → Grk(C

n+1) above is explicitly given by the Λ′-periodic
map

ψ(W̃ ) = [v1(W̃ ) ∧ . . . ∧ vk(W̃ )].

An explicit formula for the function f can be obtained using Fay’s prime
form (see e.g. [23]). It remains to combine this with the real homomorphism
γ : R2k → C

g+n/Λ′ which we have essentially computed earlier (cf. [20]).
For illustration I will do these calculations explicitly for X ∼= P

1 in the next
section.

2.2. Example: X is the Riemann sphere. Let ζ be a rational parameter
on X ∼= P

1 and define the real involution to be ρ∗ζ = ζ̄−1, then to satisfy
all our conditions λ must be of the form

(20) λ = α

k
∏

j=1

(ζ − Pj)
2

(ζ − P̄−1
j )2

n+1−2k
∏

i=1

(ζ − Ej)

(ζ − Ē−1
j )

,

where the points P1, . . . , Pk, E1, . . . , En+1−2k all lie inside |ζ| < 1 (cf. [27]).
The constant α is chosen so that |λ| = 1 over |ζ| = 1.

First we construct the homomorphism γ : R2k → J ′
R. To fix the isomor-

phism (19) we choose the basis ω1, . . . , ωn of H0(Ω(o)) given by

ωm =
1

2πi
(

1

ζ −Om+1
− 1

ζ −O1
)dζ, m = 1, . . . , n.



22 IAN MCINTOSH

Let am ∈ H1(X \o,Z) be the class of a positively oriented cycle about Om+1

only, so that
∮

al
ωm = δlm. With these bases we have

J(X ′) ∼= C
n/Zn

exp(2πi·)→ (C∗)n.

Take ζPj
= ζ − Pj for the local parameter about Pj and recall from earlier

that as an element of H0(Ω(o))t ∼= T0J(X
′)

∂A′
Pj

∂ζPj

: ωm 7→ resPj
ζ−1
Pj
ωm.

In our coordinates this is the vector 1
2πiUj where Uj ∈ C

n has m-th coordi-
nate

Ujm =
1

Pj −Om
− 1

Pj −O1
.

The map γ : R2k → (C∗)n is given by

γ(z1, . . . , zk) = exp(

k
∑

j=1

(Ujzj − Ūj z̄j)).

Now to apply proposition 5 we notice that since J(X) is the trivial group

we can take θ ≡ 1. So for W̃ = (w1, . . . , wn) we have simply

θ0(W̃ ) = 1, θ1(W̃ ) = exp(2πiw1), . . . , θn(W̃ ) = exp(2πiwn).

Finally, we need the divisors

Dl = 2Q1 + . . .+Ql + . . . 2Qk + E∞, l = 1, . . . , k,

where Qj = P̄−1
j and E∞ = Ē−1

1 + . . . + Ē−1
n+1−2k. Let fl be any rational

function with divisor R+ −Dl and define vl : C
k → C

n+1 by

(21) vl(z1, . . . , zk) = (fl(O1), fl(O2)γ1, . . . , fl(On+1)γn)

where γm = exp(
∑k

j=1(zjUjm − z̄jŪjm).

Proposition 6. [20] The pluri-harmonic map ϕ : R2k → Grk(C
n+1) with

spectral data X ∼= P
1 and λ given by (20) is given by

ϕ(z1, . . . , zk) = [v1 ∧ . . . ∧ vk].
This map is totally equivariant i.e. it can be framed by a homomorphism
R
2k → Un+1.

By a result of Kenmotsu [13] (see also [3]) the minimal (i.e. conformal
harmonic) totally equivariant maps R2 → CP

n include those minimal totally
real maps which are isometric for the flat metric on R

2. A study of their
periodicity can be found in [12]. To pass from non-conformal to conformal
maps in our construction (in the case k = 1 i.e. CPn) one insists that λ has
a zero of degree 3 at P1. In particular, this requires n ≥ 2.
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Remark. There is a geometric interpretation behind the form of vl. Suppose
ϕ : R2k → Grk(C

n+1) is totally equivariant with frame

F = exp(z ·A− z̄ ·A†), z · A =

k
∑

j=1

zjAj ,

where A1, . . . , Ak ∈ gln+1(C) are mutually commuting normal matrices. We
will assume ϕ is based so that ϕ(0) = [e1∧ . . .∧ek] where the ej are the stan-
dard basis vectors for Cn+1. The matrices Aj and their Hermitian transposes
may be simultaneously diagonalized by a unitary matrix: MAjM

−1 = Dj

where M is unitary and each Dj is diagonal. Therefore

M ◦ ϕ = MFM−1M ◦ [e1 ∧ . . . ∧ ek]
= exp(z ·D − z̄ · D̄) ◦ [u1 ∧ . . . ∧ uk]

where u1, . . . , uk are the first k columns of M . Thus

M ◦ ϕ = [v1 ∧ . . . ∧ vk]
where vl = exp(z ·D− z̄ · D̄) ◦ ul. Notice that this is essentially the form of
the map we derived above, using

Dj = diag(1, Uj1, . . . , Ujn), j = 1, . . . , k.

The vl appearing in (21) span the same k-plane as these but are not neces-
sarily orthonormal.
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