A Simple Proof of the Aztec Diamond Theorem

SEN-PENG $\mathrm{Eu}^{1,*}$ and TUNG-SHAN $\mathrm{FU}^{2,\dagger}$

 1 Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan speu@nuk.edu.tw

²Mathematics Faculty, National Pingtung Institute of Commerce, Pingtung 900, Taiwan tsfu@npic.edu.tw

Abstract

Based on a bijection between domino tilings of an Aztec diamond and nonintersecting lattice paths, a simple proof of the Aztec diamond theorem is given in terms of Hankel determinants of the large and small Schröder numbers.

MSC2000: 05A15

Keywords: Aztec diamond, Hankel matrix, Schröder numbers, lattice paths

1 Introduction

The Aztec diamond of order n, denoted by $Az(n)$, is defined as the union of all the unit squares with integral corners (x, y) satisfying $|x| + |y| \leq n + 1$. A domino is simply a 1-by-2 or 2-by-1 rectangles with integral corners. A *domino tiling* of a region R is a set of non-overlapping dominos the union of which is R. Figure [1](#page-1-0) shows the Aztec diamond of order 3 and a domino tiling. The Aztec diamond theorem, which is first proved by Elkies et al. in [\[4\]](#page-6-0), indicates that the number a_n of domino tilings of the Aztec diamond of order n is $2^{n(n+1)/2}$. They gave four proofs by relating the tilings to alternating sign matrices, monotone triangles, representations of general linear groups, and domino shuffling. Other approaches to this theorem appeared in [\[2,](#page-6-1) [3,](#page-6-2) [6\]](#page-7-0). Ciucu [\[3\]](#page-6-2) derived the recurrence relation $a_n = 2^n a_{n-1}$ by means of perfect matchings of celluar graphs. Kuo [\[6\]](#page-7-0) developed a method, called graphical condensation, to derive the recurrence relation $a_n a_{n-2} = 2a_{n-1}^2$, for $n \geq 3$. Recently, Brualdi and Kirkland [\[2\]](#page-6-1) gave a proof by considering a matrix of order $n(n + 1)$ the determinant of which gives a_n . In this note we give a proof in terms

[∗]Partially supported by National Science Council, Taiwan (NSC 92-2119-M-390-001).

[†]Partially supported by National Science Council, Taiwan (NSC 92-2115-M-251-001).

of Hankel determinants of the large and small Schröder numbers based on a bijection between the domino tilings of an Aztec diamond and non-intersecting lattice paths.

Figure 1: the $Az(3)$ and a domino tiling

Recall the *large Schröder numbers* $\{r_n\}_{n\geq 0} := \{1, 2, 6, 22, 90, 394, 1806, ...\}$ and the small Schröder numbers $\{s_n\}_{n\geq 0} := \{1, 1, 3, 11, 45, 197, 903, \ldots\}$. Among many other combinatorial structures, the *n*-th large Schröder number r_n counts the number of lattice paths in the plane $\mathbb{Z} \times \mathbb{Z}$ from $(0,0)$ to $(2n,0)$ using up steps $(1,1)$, down steps $(1,-1)$, and level steps $(2,0)$ that never pass below the x-axis. Such a path is called a *large Schröder* path of length n (or a *large n-Schröder path* for short). Let U , D , and L denote an up, down, and level step, respectively. Note that the terms of $\{r_n\}_{n\geq 1}$ are twice of those in ${s_n}_{n\geq 1}$. Consequently, the *n*-th small Schröder number s_n counts the number of large n-Schröder paths without level steps on the x-axis, for $n \geq 1$. Such a path is called a small n-Schröder path. Refer to [\[7,](#page-7-1) Exercise 6.39] for more information.

Our proof relies on the determinants of the following *Hankel matrices* of the large and small Schröder numbers

$$
H_n^{(1)} := \begin{bmatrix} r_1 & r_2 & \cdots & r_n \\ r_2 & r_3 & \cdots & r_{n+1} \\ \vdots & \vdots & & \vdots \\ r_n & r_{n+1} & \cdots & r_{2n-1} \end{bmatrix}, \quad G_n^{(1)} := \begin{bmatrix} s_1 & s_2 & \cdots & s_n \\ s_2 & s_3 & \cdots & s_{n+1} \\ \vdots & \vdots & & \vdots \\ s_n & s_{n+1} & \cdots & s_{2n-1} \end{bmatrix}.
$$

Note that $H_n^{(1)} = 2G_n^{(1)}$. Using a method of Gessel and Viennot [\[5\]](#page-6-3), we associate the determinants of $H_n^{(1)}$ and $G_n^{(1)}$ with the numbers of *n*-tuples of non-intersecting large and small Schröder paths, respectively. How to derive the determinants of $H_n^{(1)}$ and $G_n^{(1)}$ and how to establish bijections between domino tilings of an Aztec diamond and nonintersecting large Schröder paths are given in the next section.

2 A proof of the Aztec diamond theorem

Let Π_n (resp. Ω_n) denote the set of *n*-tuples (π_1, \ldots, π_n) of large Schröder paths (resp. small Schröder paths) satisfying the following two conditions.

- (A1) The path π_i goes from $(-2i+1,0)$ to $(2i-1,0)$, for $1 \leq i \leq n$, and
- (A2) any two paths π_i and π_j do not intersect.

There is an immediate bijection ϕ between Π_{n-1} and Ω_n , for $n \geq 2$, which carries $(\pi_1, \ldots, \pi_{n-1}) \in \Pi_{n-1}$ into $\phi((\pi_1, \ldots, \pi_{n-1})) = (\omega_1, \ldots, \omega_n) \in \Omega_n$, where $\omega_1 = \text{UD}$ and $\omega_i = \text{UU}_{\pi_{i-1}} \text{DD}$ (i.e., ω_i is obtained from π_{i-1} with 2 up steps attached in the beginning and 2 down steps attached in the end, and then rises above the x-axis), for $2 \le i \le n$. For example, on the left of Figure [2](#page-2-0) is a triple $(\pi_1, \pi_2, \pi_3) \in \Pi_3$. The corresponding quadruple $(\omega_1, \omega_2, \omega_3, \omega_4) \in \Omega_4$ is shown on the right. Hence, for $n \geq 2$, we have

$$
|\Pi_{n-1}| = |\Omega_n|.\tag{1}
$$

Figure 2: a triple $(\pi_1, \pi_2, \pi_3) \in \Pi_3$ and the corresponding quadruple $(\omega_1, \omega_2, \omega_3, \omega_4) \in \Omega_4$

For a permutation $\sigma = z_1z_2 \cdots z_n$ of $\{1, \ldots, n\}$, the sign of σ , denoted by sgn(σ), is defined by $sgn(\sigma) := (-1)^{inv(\sigma)}$, where $inv(\sigma) := Card{(z_i, z_j)} \mid i < j$ and $z_i > z_j$ is the number of *inversions* of σ . Using the technique of a sign-reversing involution over a signed set, we prove that the cardinalities of Π_n and Ω_n coincide with the determinants of $H_n^{(1)}$ and $G_n^{(1)}$, respectively. Following the same steps as [\[8,](#page-7-2) Theorem 5.1], a proof is given here for completeness.

Proposition 2.1 For $n \geq 1$, we have

(i) $|\Pi_n| = \det(H_n^{(1)}) = 2^{n(n+1)/2}$, and

(ii)
$$
|\Omega_n| = \det(G_n^{(1)}) = 2^{n(n-1)/2}
$$
.

Proof: For $1 \leq i \leq n$, let A_i denote the point $(-2i + 1, 0)$ and let B_i denote the point $(2i-1,0)$. Let h_{ij} denote the (i, j) -entry of $H_n^{(1)}$. Note that $h_{ij} = r_{i+j-1}$ is equal to the number of large Schröder paths from A_i to B_j . Let P be the set of ordered pairs $(\sigma,(\tau_1,\ldots,\tau_n))$, where σ is a permutation of $\{1,\ldots,n\}$, and (τ_1,\ldots,τ_n) is an *n*-tuple of large Schröder paths such that τ_i goes from A_i to $B_{\sigma(i)}$. According to the sign of σ , the ordered pairs in P are partitioned into P^+ and P^- . Then

$$
\det(H_n^{(1)}) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i=1}^n h_{i,\sigma(i)} = |P^+| - |P^-|.
$$

If there exists a sign-reversing involution φ on P, then $\det(H_n^{(1)})$ is equal to the number of fixed points of φ . Let $(\sigma, (\tau_1, \ldots, \tau_n)) \in P$ be such a pair that at least two paths of (τ_1, \ldots, τ_n) intersect. Choose the first pair $i < j$ in lexical order such that τ_i intersects τ_j . Construct new paths τ'_i and τ'_j by switching the tails after the last point of intersection of τ_i and τ_j . Now τ'_i goes from A_i to $B_{\sigma(j)}$ and τ'_j goes from A_j to $B_{\sigma(i)}$. Since $\sigma \circ (ij)$ carries i into $\sigma(j)$, j into $\sigma(i)$, and k into $\sigma(k)$, for $k \neq i, j$, we define

$$
\varphi((\sigma,(\tau_1,\ldots,\tau_n)))=(\sigma\circ (ij),(\tau_1,\ldots,\tau'_i,\ldots,\tau'_j,\ldots,\tau_n)).
$$

Clearly, φ is sign-reversing. Since the first intersecting pair $i < j$ is not affected by φ , φ is an involution. The fixed points of φ are the pairs $(\sigma,(\tau_1,\ldots,\tau_n))\in P$ such that σ is the identity, and τ_1, \ldots, τ_n do not intersect, i.e., $(\tau_1, \ldots, \tau_n) \in \Pi_n$. Hence $\det(H_n^{(1)}) = |\Pi_n|$. By the same argument, we have $\det(G_n^{(1)}) = |\Omega_n|$. It follows from [\(1\)](#page-2-1) and the identity $H_n^{(1)} = 2G_n^{(1)}$ that

$$
|\Pi_n| = \det(H_n^{(1)}) = 2^n \cdot \det(G_n^{(1)}) = 2^n |\Omega_n| = 2^n |\Pi_{n-1}|.
$$

Note that $|\Pi_1| = 2$, and hence, by induction, the assertions (i) and (ii) follow.

To prove the Aztec diamond theorem, we shall establish a bijection between Π_n and the set of domino tilings of $Az(n)$ based on an idea, due to D. Randall, mentioned in [\[7,](#page-7-1) Solution of Exercise 6.49].

Proposition 2.2 There is a bijection between the set of domino tilings of the Aztec diamond of order n and the set of n-tuples (π_1, \ldots, π_n) of large Schröder paths satisfying the conditions (A1) and (A2).

Proof: Given a tiling T of Az (n) , we associate T with an n-tuple (τ_1, \ldots, τ_n) of nonintersecting paths as follows. Let the rows of $Az(n)$ be indexed by $1, 2, ..., 2n$ from bottom to top. For $1 \leq i \leq n$, define a path τ_i from the center of the left-hand edge of the *i*-th row to the center of the right-hand edge of the *i*-th row. Namely, each step of the path is from the center of a domino edge (where a domino is regarded as having six edges of unit length) to the center of another edge of the some domino D , such that the step is symmetric with respect to the center of D . One can check that for each tiling there is a unique such an *n*-tuple (τ_1, \ldots, τ_n) of paths, moreover, any two paths τ_i , τ_j of which do not intersect. Conversely any such n-tuple of paths corresponds to a unique domino tiling of $Az(n)$ (note that any domino not on these paths is horizontal).

To establish a mapping ψ , for $1 \leq i \leq n$, we form a large Schröder path π_i from τ_i with $i - 1$ up steps attached in the beginning of τ_i and with $i - 1$ down steps attached in the end (and then raise π_i above the x-axis), and define $\psi(T) = (\pi_1, \ldots, \pi_n)$. One can verify that the *n*-tuple (π_1, \ldots, π_n) of large Schröder paths satisfies the conditions (A1) and (A2), and hence $\psi(T) \in \Pi_n$. To find ψ^{-1} , we can retrieve an *n*-tuple (τ_1, \ldots, τ_n) of non-intersecting paths, which corresponds to a unique domino tiling of $Az(n)$, from each n-tuple (π_1, \ldots, π_n) of large Schröder paths satisfying the conditions (A1) and (A2) by a reverse procedure.

For example, on the left of Figure [3](#page-5-0) is a tiling T of $Az(3)$ and the associated triple (τ_1, τ_2, τ_3) of non-intersecting paths. On the right of Figure [3](#page-5-0) is the corresponding triple $\psi(T) = (\pi_1, \pi_2, \pi_3) \in \Pi_3$ of large Schröder paths.

By Propositions [2.1](#page-2-2) and [2.2,](#page-3-0) we deduce the Aztec diamond theorem anew.

Theorem 2.3 (Aztec diamond theorem) The number of domino tilings of the Aztec diamond of order n is $2^{n(n+1)/2}$.

Remark: The proof of Proposition [2.1](#page-2-2) relies on the recurrence relation $\Pi_n = 2^n \Pi_{n-1}$ essentially, which is derived by means of the determinants of the Hankel matrices $H_n^{(1)}$ and $G_n^{(1)}$. We are interested to hear a purely combinatorial proof of this recurrence relation.

Figure 3: a tiling of $Az(3)$ and the corresponding triple of non-intersecting Schröder paths

In a similar manner we derive the determinants of the Hankel matrices of large and small Schröder paths of the forms

$$
H_n^{(0)} := \begin{bmatrix} r_0 & r_1 & \cdots & r_{n-1} \\ r_1 & r_2 & \cdots & r_n \\ \vdots & \vdots & & \vdots \\ r_{n-1} & r_n & \cdots & r_{2n-2} \end{bmatrix}, \quad G_n^{(0)} := \begin{bmatrix} s_0 & s_1 & \cdots & s_{n-1} \\ s_1 & s_2 & \cdots & s_n \\ \vdots & \vdots & & \vdots \\ s_{n-1} & s_n & \cdots & s_{2n-2} \end{bmatrix}.
$$

Proposition 2.4 For $n \geq 1$, $\det(H_n^{(0)}) = \det(G_n^{(0)}) = 2^{n(n-1)/2}$.

Proof: Let Π_n^* (resp. Ω_n^*) be the set of *n*-tuples $(\mu_0, \mu_1, \ldots, \mu_{n-1})$ of large Schröder paths (resp. small Schröder paths) satisfying the two conditions (i) the path μ_i goes from $(-2i, 0)$ to $(2i, 0)$, for $0 \le i \le n-1$, and (ii) any two paths μ_i and μ_j do not intersect. Note that μ_0 degenerates into a single point and that \prod_n^* and Ω_n^* are identical since for any $(\mu_0, \mu_1, \ldots, \mu_{n-1}) \in \Pi_n^*$ all of the paths μ_i have no level steps on the x-axis. By a similar argument of Proposition [2.1,](#page-2-2) we have $\det(H_n^{(0)}) = |\Pi_n^*| = |\Omega_n^*| = \det(G_n^{(0)})$. Moreover, there is a bijection ρ between Π_{n-1} and Π_n^* , for $n \geq 2$, which carries $(\pi_1, \ldots, \pi_{n-1}) \in \Pi_{n-1}$ into $\rho((\pi_1,\ldots,\pi_{n-1})) = (\mu_0,\mu_1,\ldots,\mu_{n-1}) \in \Pi_n^*$, where μ_0 is the origin and $\mu_i = \mathsf{U}\pi_i\mathsf{D}$, for $1 \leq i \leq n-1$. The assertion follows from Proposition [2.1\(](#page-2-2)i).

For example, on the left of Figure [4](#page-6-4) is a triple $(\pi_1, \pi_2, \pi_3) \in \Pi_3$ of non-intersecting large Schröder paths. The corresponding quadruple $(\mu_0, \mu_1, \mu_2, \mu_3) \in \Pi_4^*$ is shown on the right.

Hankel matrices $H_n^{(0)}$ and $H_n^{(1)}$ may be associated with any given sequence of real numbers. As noted by Aigner in [\[1\]](#page-6-5) that the sequence of determinants

$$
\det(H_1^{(0)}), \det(H_1^{(1)}), \det(H_2^{(0)}), \det(H_2^{(1)}), \dots
$$

Figure 4: a triple $(\pi_1, \pi_2, \pi_3) \in \Pi_3$ and the corresponding quadruple $(\mu_0, \mu_1, \mu_2, \mu_3) \in \Pi_4^*$

uniquely determines the original number sequence provided that $\det(H_n^{(0)}) \neq 0$ and $\det(H_n^{(1)}) \neq 0$, for all $n \geq 1$, we have a characterization of large and small Schröder numbers.

Corollary 2.5 The following results hold.

- (i) The large Schröder numbers $\{r_n\}_{n\geq 0}$ are the unique sequence with the Hankel determinants $\det(H_n^{(0)}) = 2^{n(n-1)/2}$ and $\det(H_n^{(1)}) = 2^{n(n+1)/2}$, for all $n \ge 1$.
- (ii) The small Schröder numbers $\{s_n\}_{n\geq 0}$ are the unique sequence with the Hankel determinants $\det(G_n^{(0)}) = \det(G_n^{(1)}) = 2^{n(n-1)/2}$, for all $n \ge 1$.

References

- [1] M. Aigner, Catalan-like numbers and determinants, J. Combin. Theory Ser. A 87 (1999), 33–51.
- [2] R. A. Brualdi and S. Kirkland, Aztec diamonds and diagraphs, and Hankel determinants of Schröder numbers, preprint 2003.
- [3] M. Ciucu, Perfect matchings of cellular graphs, J. Algebraic Combinatorics 5 (1996), 87–103.
- [4] N. Elkies, G. Kuperberg, M. Larsen, and J. Propp, Alternating-sign matrices and domino tilings (Part I), J. Algebraic Combinatorics 1 (1992), 111-132.
- [5] I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Advances in Math. 58 (1985), 300–321.
- [6] E. H. Kuo, Applications of graphical condensation for enumerating matchings and tilings, Theoret. Comput. Sci. 319 (2004), 29-57.
- [7] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge, 1999.
- [8] D. Stanton and D. White, Constructive Combinatorics, Springer-Verlag, Berlin/Heidelberg/New York, 1986.