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QUANTIZATION OF FORMAL CLASSICAL DYNAMICAL

r-MATRICES: THE REDUCTIVE CASE

DAMIEN CALAQUE

Abstrat. In this paper we prove the existene of a formal dynamial twist

quantization for any triangular and non-modi�ed formal lassial dynamial

r-matrix in the redutive ase. The dynamial twist is onstruted as the

image of the dynamial r-matrix by a L∞-quasi-isomorphism. This quasi-

isomorphism also allows us to lassify formal dynamial twist quantizations

up to gauge equivalene.

Introdution

In [Fe℄, Felder introdued dynamial versions of both lassial and quantum

Yang-Baxter equations whih has been generalized to the ase of a nonabelian base

in [EV℄ for the lassial part and in [X3℄ for the quantum part. Naturally this leads

to quantization problems whih have been formulated in terms of twist quantization

à la Drinfeld ([Dr1℄) in [X2, X3, EE1, EE2℄.

Let us formulate this problem in the general ontext. Consider an inlusion

h ⊂ g of Lie algebras equipped with an element Z ∈ (∧3g)g. A (modi�ed) lassial

dynamial r-matrix for (g, h, Z) is a regular (meaning C∞
, meromorphi, formal,

. . . depending on the ontext) h-equivariant map ρ : h∗ → ∧2g whih satis�es the

(modi�ed) lassial dynamial Yang-Baxter equation (CDYBE)

(1) CYB(ρ)−Alt(dρ) = Z

where CYB(ρ) := [ρ1,2, ρ1,3] + [ρ1,2, ρ2,3] + [ρ1,3, ρ2,3] = 1
2 [ρ, ρ] and

Alt(dρ) :=
∑

i

(
h1i
∂ρ2,3

∂λi
− h2i

∂ρ1,3

∂λi
+ h3i

∂ρ1,2

∂λi
)

Here (hi) and (λi) are dual basis of h and h∗.

Let Φ = 1 + O(~2) ∈ (Ug⊗3)g[[~]] be an assoiator quantizing Z (of whih the

existene was proved in [Dr2, proposition 3.10℄). A dynamial twist quantization of

a (modi�ed) lassial dynamial r-matrix ρ assoiated to Φ is a regular h-equivariant

map J = 1 + O(~) ∈ Reg(h∗, Ug⊗2)[[~]] suh that AltJ−1
~

= ρ mod ~ and whih

satis�es the (modi�ed) dynamial twist equation (DTE)

(2) J12,3(λ) ∗ J1,2(λ + ~h3) = Φ−1J1,23(λ) ∗ J2,3(λ)

where ∗ denotes the PBW star-produt of funtions on h∗ and

J1,2(λ+ ~h3) :=
∑

k≥0

~k

k!

∑

i1,...,ik

(∂λi1 · · ·∂λi
k J)(λ)⊗ (hi1 · · ·hik)

1
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2 DAMIEN CALAQUE

Now observe that many (modi�ed) lassial dynamial r-matries an be viewed

as formal ones by taking their Taylor expansion at 0. In this paper we are interested
in the following onjeture:

Conjeture 0.1 ([EE1℄). Any (modi�ed) formal lassial dynamial r-matrix ad-

mits a dynamial twist quantization.

Let us reformulate DTE in the formal framework. A formal (modi�ed) dynamial

twist is an element J(λ) = 1 + O(~) ∈ (Ug⊗2⊗̂Ŝh)h[[~]] whih satis�es DTE,

and J1,2(λ + ~h3) ∈ (Ug⊗3⊗̂Ŝh)[[~]] is equal to (id⊗2 ⊗ ∆̃)(J) where ∆̃ : Ŝh →

(Ug⊗̂Ŝh)[[~]] is indued by h ∋ x 7→ ~x ⊗ 1 + 1 ⊗ x. Then de�ne K := J(~λ) ∈
(Ug⊗2 ⊗ Sh)h[[~]] whih we view as an element of (Ug⊗2 ⊗ Uh)h[[~]] using the

symmetrization map Sh → Uh. Sine J is a solution of DTE K satis�es the

(modi�ed) algebrai dynamial twist equation (ADTE)

(3) K12,3,4K1,2,34 = (Φ−1)1,2,3K1,23,4K2,3,4

Moreover and by onstrution, K = 1 +
∑

n≥1 ~
nKn has the ~-adi valuation

property. Namely, Uh is �ltered by (Uh)≤n = ker (id− η ◦ ε)⊗n+1 ◦∆(n)
where

ε : Uh → k and η : k → Uh are the ounit and unit maps, and Kn ∈ (Uh)≤n−1.

Conversely, any algebrai dynamial twist having the ~-adi valuation property an

be obtained from a unique formal dynamial twist by this proedure.

This paper, in whih we always assume Z = 0 and Φ = 1 (non-modi�ed ase),

is organized as follow.

In setion 1 we de�ne two di�erential graded Lie algebras (dgla's) respetively

assoiated to lassial dynamial r-matries and algebrai dynamial twists. Then

we formulate the main theorem of this paper whih states that if h admits an

adh-invariant omplement (the redutive ase) then these two dgla's are L∞-quasi-

isomorphi and we prove that it implies Conjeture 0.1 in this ase, whih general-

izes Theorem 5.3 of [X2℄:

Theorem 0.2. In the redutive ase, any formal lassial dynamial r-matrix for

(g, h, 0) admits a dynamial twist quantization (assoiated to the trivial assoiator).

The seond setion is devoted to the proof of the main theorem of setion 1: using

an equivariant formality theorem for homogeneous spaes whih is obtain from [Do℄,

we onstrut a L∞-quasi-isomorphism whih we then modify in order to obtain the

desired one. We use this L∞-quasi-isomorphism to lassify formal dynamial twist

quantizations up to gauge equivalene for the redutive ase in setion 3. In setion

4 we prove that if g = h⊕m for h abelian and m a Lie subalgebra then the results

of setions 1 and 2 are still true in this situation. We onlude the paper with some

open questions, and reall basi results for L∞-algebras in an appendix.

Aknowledgements. I thank Benjamin Enriquez for many usefull disussions on

this subjet.

1. Definitions and results

Let h ⊂ g be an inlusion of Lie algebras.
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1.1. Algebrai strutures assoiated to CDYBE. Let us onsider the follow-

ing graded vetor spae

CDYB := ∧∗g⊗ Sh =
⊕

k≥0

∧kg⊗ Sh

equipped with the di�erential d de�ned by

(4) d(x1 ∧ · · · ∧ xk ⊗ h1 · · ·hl) := −
l∑

i=1

hi ∧ x1 ∧ · · · ∧ xk ⊗ h1 · · ·hlĥi

With the exterior produt ∧ it beomes a di�erential graded ommutative assoia-

tive algebra. Moreover, one an de�ne a graded Lie braket of degree −1 on CDYB
whih is the Lie braket of g extended to CDYB in the following way:

(5) [a, b ∧ c] = [a, b] ∧ c+ (−1)(|a|−1)|b|b ∧ [a, c]

Thus one an observe that polynomial solutions to CDYBE are exatly elements

ρ ∈ CDYB of degree 2 suh that dρ+ 1
2 [ρ, ρ] = 0. We would like to say that suh a

ρ is a Maurer-Cartan element but (CDYB[1], d, [, ]) is not a di�erential graded Lie

algebra (dgla).

Instead, remember that we are interested in h-equivariant solutions of CDYBE

(i.e., dynamial r-matries) and thus onsider the subspae g1 = (CDYB)h of h-

invariants with the same di�erential and braket.

Proposition 1.1. (g1[1], d, [, ]) is a dgla. Moreover (g1, d,∧, [, ]) is a Gerstenhaber

algebra.

Proof. Let a = x1∧· · ·∧xk⊗h1 · · ·hs and b = y1∧· · ·∧yl⊗m1 · · ·mt be h-invariant

elements in g1. We want to show that

(6) d[a, b] = [da, b] + (−1)k−1[a, db]

The l.h.s. of (6) is equal to

−
( s∑

i=1

hi ∧ [x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yl]⊗ h1 · · ·hsm1 · · ·mtĥi

+
t∑

j=1

mj ∧ [x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yl]⊗ h1 · · ·hsm1 · · ·mtm̂j

)

The �rst term in the r.h.s. of (6) gives

s∑

i=1

(
(−1)k−1x1∧· · ·∧xk∧[hi, y1∧· · ·∧yl]−hi∧[x1∧· · ·∧xk, y1∧· · ·∧yl]

)
⊗h1 · · ·hsm1 · · ·mtĥi

and for the seond term we obtain

t∑

j=1

(
(−1)k−1[mj , x1∧· · ·∧xk]∧y1∧· · ·∧yl−mj∧[x1∧· · ·∧xk, y1∧· · ·∧yl]

)
⊗h1 · · ·hsm1 · · ·mtm̂j
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Thus the di�erene between the l.h.s. and the r.h.s. of (6) is equal to

(−1)k
( k∑

i=1

x1 ∧ · · · ∧ xk ∧ [hi, y1 ∧ · · · ∧ yl]⊗ h1 · · ·hsm1 · · ·mtĥi

+

l∑

j=1

[mj , x1 ∧ · · · ∧ xk] ∧ y1 ∧ · · · ∧ yl ⊗ h1 · · ·hsm1 · · ·mtm̂j

)

Then using h-invariane of a and b one obtains

(−1)k−1
∑

i,j

x1∧· · ·∧xk∧y1∧· · ·∧yl⊗
(
h1 · · ·hsm1 · · ·mt([hi,mj ]−[mj , hi])ĥim̂j

)
= 0

The seond statement of the proposition is obvious from the de�nition (5) of the

braket. �

Let ρ(λ) ∈ (∧2g⊗̂Ŝh)h be a formal lassial dynamial r-matrix. Sine ρ satis�es
CDYBE, α := ~ρ(~λ) ∈ ~g1[[~]] is a Maurer-Cartan element (i.e. dα+ 1

2 [α, α] = 0).

1.2. Algebrai strutures assoiated to ADTE. Let us now onsider the graded

vetor spae

ADT := T ∗Ug⊗ Uh =
⊕

k≥0

⊗kUg⊗ Uh

equipped with the di�erential b given by

(7) b(P ) := P 2,...,k+2 +

k+1∑

i=1

(−1)iP 1,...,ii+1,...,k+2 for P ∈ ⊗kUg⊗ Uh

Remark 1.2. This is just the oboundary operator of Hohshild's ohomology

with value in a omodule; and b2 = 0 follows diretly from an easy alulation.

One an de�ne on ADT an assoiative produt ∪ (the up produt) whih is

given on homogeneous elements P ∈ ⊗kUg⊗ Uh and Q ∈ ⊗lUg⊗ Uh by

P ∪Q := P 1,...,k,k+1...k+l+1Qk+1,...,k+l+1

Proposition 1.3. (ADT, b,∪) is a di�erential graded assoiative algebra.

Proof. The up produt is obviously assoiative. Thus the only thing we have to

hek is that

(8) b(P ∪Q) = bP ∪Q+ (−1)|P |P ∪ bQ

Let k = |P | and l = |Q|. The l.h.s. of (8) is equal to

P 2,...,k+1,k+2...k+l+2Qk+2,...,k+l+2 +

k∑

i=1

(−1)iP 1,...,ii+1,...,k+1,k+2...k+l+2Qk+2,...,k+l+2

+

k+l+1∑

i=k+1

(−1)iP 1,...,k,k+1...k+l+2Qk+1,...,ii+1,...,k+l+2

The �rst line of this expression is equal to

bP ∪Q− (−1)k+1P 1,...,k,k+1...k+l+2Qk+2,...,k+l+2

and the last term of the same expression gives

(−1)k
(
P ∪ bQ− P 1,...,k,k+1...k+l+2Qk+2,...,k+l+2

)
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The proposition is proved. �

Reall that in the ase h = {0} one an de�ne a brae algebra struture on

(T ∗Ug)[1] (see [Ge℄). Unfortunately we are not able to extend this struture to ADT
in general. Sine we deal with h-equivariant solutions of ADTE we an onsider

the subspae g2 = (ADT)h of h-invariants. Let us now de�ne a olletion of linear

homogeneous maps of degree zero {−|−, . . . ,−} : g2[1] ⊗ g2[1]
⊗m → g2[1] indexed

by m ≥ 0, and {P |Q1, . . . , Qm} is given by

∑

0≤i1,im+km≤n
il+kl≤il+1

(−1)ǫP 1,...,i1+1...i1+k1,...,im+1...im+km,...,n+1
m∏

s=i

Qis+1,...,is+ks,is+ks+1...n+1
s

where ks = |Qs|, n = |P |+
∑

s ks −m and ǫ =
∑

s(ks − 1)is.

Proposition 1.4. (g2[1], {−|−, . . . ,−}) is a brae algebra.

Proof. Sine we work with h-invariant elements one an remark that if is + ks ≤ it
then Qis+1,...,is+ks,is+ks+1...n+1

s and Qit+1,...,it+kt,it+kt+1...n+1
t ommute. Using this

the proof beomes idential to the ase when h = 0 (see [Ge℄ for example). �

Now observe that sine m = 1⊗3 ∈ (⊗2Ug ⊗ Uh)h is suh that {m|m} = 0 one

obtains a B∞-algebra struture ([Ba℄) on g2 (see [Kh℄). More preisely, we have a

di�erential graded bialgebra struture on the ofree tensorial oalgebra T (g2[1]) of
whih struture maps an, ap,q are given by

• a1(P ) = bP = (−1)|P |−1[m,P ]G, where

[P,Q]G := {P |Q} − (−1)(|P |−1)(|Q|−1){Q|P}

• a2(P,Q) = {m|P,Q} = P ∪Q
• a0,1 = a1,0 = id
• a1,n(P ;Q1, . . . , Qn) = {P |Q1, . . . , Qn} for n ≥ 1
• all other maps are zero

In partiular, we have

Proposition 1.5. (g2[1], b, [, ]G) is a dgla.

Remark 1.6. Sine that for any graded vetor spae V , dg bialgebra strutures

on the ofree oassoiative oalgebra T cV are in one-to-one orrespondene with

dg Lie bialgebra strutures on the ofree Lie oalgebra LcV (see [Ta℄, setion 5),

then Lc(g2[1]) beomes a dg Lie bialgebra with di�erential and Lie braket given by

maps ln, lp,q suh that l1 = b and l1,1 = [, ]G. Therefore d2 :=
∑

i≥0 l
i+

∑
p,q≥0 l

p,q :

Cc(Lc(g2[1])) → Cc(Lc(g2[1])) de�nes a G∞-algebra struture on g2 (d2 ◦ d2 = 0
sine d2 is just the Chevalley-Eilenberg di�erential on the dg Lie algebra Lc(g2[1])).

1.3. Main result and proof of theorem 0.2. First of all, observe that CDYB,
g1 and G1 := Cc(g1[2]) have a natural grading indued by the one of Sh. In the

same way ADT, g2 and G2 := Cc(g2[2]) have a natural �ltration indued by the

one of Uh. Our main goal is to prove the following theorem, whih is su�ient to

obtain algebrai dynamial twists from formal dynamial r-matries.

Theorem 1.7. In the redutive ase, there exists a L∞-quasi-isomorphism

Ψ : (G1, d + [, ])→ (G2, b+ [, ]G)

with the following two �ltration properties:
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(F1) ∀X ∈ (g1)k, Ψ
1(X) = (alt⊗ sym)(X) mod (g2)≤k−1

(F2) ∀X ∈ (Λng1)k, Ψ
n(X) ∈ (g2)≤n+k−1

Proof of Theorem 0.2. Now onsider a formal solution ρ(λ) ∈ (∧2g⊗̂Ŝh)h to CDYBE.
Let us de�ne α := ~ρ(~λ) ∈ ~g1[[~]] whih is a Maurer-Cartan element in ~g1[[~]].
The L∞-morphism property implies that α̃ :=

∑∞
n=1

1
n!Ψ

n(Λnα) is a Maurer-

Cartan element in ~g2[[~]]; this exatly means that K := 1+ α̃ ∈ (⊗2Ug⊗Uh)h[[~]]
satis�es ADTE. Moreover, due to (F2) the oe�ientKn of ~n inK lies in (g2)≤n−1.

It means that there exists J ∈ (Ug⊗2⊗̂Ŝh)h[[~]] satisfying DTE and suh that

K = (id⊗2 ⊗ sym)(J(~λ)). Finally, property (F1) obviously implies that the semi-

lassial limit ondition

J−Jop

~
= ρ mod ~ is satis�ed. �

2. Proof of theorem 1.7

In this setion we assume that g = h ⊕ m with [h,m] ⊂ m. Let us denote by

p : g→ m the projetion on m along h; it is h-equivariant.

2.1. Resolutions. Let us �rst observe that the bilinear map [, ]m := (∧·p) ◦ [, ]
de�nes a graded Lie braket of degree −1 on (∧∗m)h. Then we prove

Proposition 2.1. The natural map p1 : (g1[1], d, [, ]) → ((∧∗m)h[1], 0, [, ]m) is a

morphism of dgla's. Moreover, there exists an operator δ : g∗1 → g∗−1
1 suh that

δd + dδ = id − p1, δ ◦ δ = 0 and δ
(
(g1)k

)
⊂ (g1)k+1. In partiular, p1 indues an

isomorphism in ohomology.

Proof. The projetion p1 := (∧·p) ⊗ ε : (CDYB, d) → (∧∗m, 0) is a h-equivariant

morphism of omplexes, and it obviously restrits to a morphism of (di�erential)

graded Lie algebras at the level of h-invariants.

Moreover, ∧ng ⊗ Sh ∼=
⊕

p+q=n ∧
pm ⊗ ∧qh ⊗ Sh as a h-module; and under

this identi�ation d beomes −id ⊗ dK , where dK : ∧∗h ⊗ Sh → ∧∗+1h ⊗ Sh is

Koszul's oboundary operator, and p1 orresponds to the projetion on the part of

zero antisymmetri and symmetri degrees in h. Let us de�ne δ = id ⊗ δK with

δK : ∧∗h⊗ S∗h→ ∧∗−1h⊗ S∗+1h de�ned by

δK(x1∧· · ·∧xn⊗h1 · · ·hm) =

{
1

m+n

∑
i
(−1)ix1 ∧ · · · x̂i · · · ∧ xn ⊗ h1 · · · hmxi if m+ n 6= 0

0 otherwise

Finally remark δ is a h-equivariant homotopy operator: δd + dδ = id − p1 and

δ ◦ δ = 0. The proposition is proved. �

Now we prove a similar result for g2. Let us �rst de�ne Um := sym(Sm) ⊂
Ug; this is a sub-oalgebra of Ug and thus T ∗Um equipped with its Hohshild's

oboundary operator bm beomes a ohain subomplex of the Hohshild omplex

(T ∗Ug, bg) of Ug. We also have the following

Lemma 2.2. Ug = Ug·h⊕Um as a �ltered h-module. Moreover [, ]G,m := (⊗·p)◦[, ]
de�nes a graded Lie braket of degree −1 on (T ∗Um)h

Proof. See [He, Ch.II �4.2℄ for the �rst statement. The seond statement follows

from a diret omputation. �

Then we prove the
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Proposition 2.3. The natural map p2 : (g2[1], b, [, ]G) → ((T ∗Um)h[1], bm, [, ]G,m)

is a morphism of dgla's. Moreover, there exists an operator κ : g∗2 → g∗−1
2 suh

that κb + bκ = id − p2, κ ◦ κ = 0 and κ
(
(g2)≤k

)
⊂ (g2)≤k+1. In partiular, p2

indues an isomorphism in ohomology.

Proof. The projetion p2 := (⊗·p) ⊗ ε : (ADT, b)→ (T ∗Um, bm) is a h-equivariant

morphism of omplexes, and it obviously restrits to a morphism of dgla's at the

level of h-invariants (by lemma 2.2).

Remember that g2 has a natural �ltration indued by the one of Uh. Then one

obtains a spetral sequene of whih we ompute the �rst terms:

E∗,∗
0 = (T ∗Ug⊗ S∗h)h d0 = bg ⊗ id

E∗,∗
1 = (∧∗g⊗ S∗h)h d1 = d

E∗,∗
2 = E∗,0

2 = (∧∗m)h d2 = 0

Then the proposition follows from proposition 2.1. �

2.2. Inverting p2. In this subsetion, taking our inspiration from [Mo, appendix℄,

we prove the following

Proposition 2.4. There exists a L∞-quasi-isomorphism

Q2 : (Cc((T ∗Um)h[2]), bm + [, ]G,m)→ (Cc(g2[2]), b+ [, ]G)

suh that Q1
2 is the natural inlusion and Qn

2 takes values in (g2)≤n−1.

Proof. Let (N, bN ) ⊂ (g2, b) be the kernel of the surjetive morphism of omplexes

p2 : (g2, b)→ ((T ∗Um)h, bm). It follows from the proofs of propositions 2.1 and 2.3

that there exists an operatorH : N∗ → N∗−1
suh thatH◦H = 0, bNH+HbN = id

and H(N≤n) ⊂ N≤n+1.

Now let us onstrut a L∞-isomorphism

F :
(
Cc(g2[2]), b+ [, ]G

)
−̃→

(
Cc((T ∗Um)h[2]⊕N [2]), bm + bN + [, ]G,m

)

with struture maps Fn : Λng2 → ((T ∗Um)h ⊕N)[1− n] suh that

• F1
is the sum of p2 with the projetion on N along (T ∗Um)h (in some sense

F1
is the identity),

• for any n > 1 and X ∈ (Λng2)≤k, F
n(X) ∈ N≤n+k−1.

Let us prove it by indution on n. First F1
is a morphism of omplexes by de�nition.

Then let us de�ne K2 : Λ2g2 → ((T ∗Um)h ⊕N)[1] by

K2(xΛy) = [F1(x),F1(y)]G,m −F
1([x, y]G)

It takes values in N [1] and is suh that bNK2(x, y) + K2(bx, y) + K2(x, by) = 0.
Consequently F2 := H ◦ K2 : Λ2g2 → N is suh that

bNF
2(x, y)−F2(bx, y)−F2(x, by) = K2(x, y) (L∞-ondition for F2)

and for any X ∈ (Λ2g2)≤k, F
2(X) ∈ N≤k+1. After this, suppose we have on-

struted F1, . . . ,Fn
and let us de�ne

Kn+1 := [, ]G,m ◦ F
≤n −F≤n ◦ [, ]G : Λ2g2 → ((T ∗Um)h ⊕N)[1]

It obviously takes values in N [1] and is suh that bNKn+1 + Kn+1b = 0. Conse-

quently Fn+1 := H ◦Kn+1 satis�es the L∞-ondition

bNF
n+1 −Fn+1b = bNHKn+1 −HKn+1b = (bNH +HbN)Kn+1 = Kn+1

and for any X ∈ (Λng2)≤n+1, F
n+1(X) ∈ N≤n+k (sine Kn+1(X) ∈ N≤n+k−1).
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Now let H be the inverse of the isomorphism F , it is suh that for any n ≥ 1
and X ∈ (Λng2)≤k, H

n(X) ∈ N≤n+k−1. Finally we obtain Q2 by omposing H
with the inlusion of dgla's (T ∗Um)h[1] →֒ ((T ∗Um)h ⊕N)[1]. �

2.3. End of the proof. Reall from [He, Ch.II �4.2℄ that (T ∗Um)h = Diff∗(G/H)G

and (∧∗m)h = Γ(G/H,∧∗T (G/H))G as dgla's. Remember also from [No, Ch.II

�8℄ that G-invariant onnetions on G/H are in one-to-one orrespondene with

h-equivariant linear maps α : m ⊗ m → m, and that the torsion tensor is given

by α − α21 − p ◦ [, ]. Thus G/H is equipped with a G-invariant torsion free on-

netion ∇, orresponding to the map α := 1
2p ◦ [, ]. Then using a theorem of

Dolgushev, see [Do, theorem 5℄, we obtain a G-equivariant L∞-quasi-isomorphism

φ : Γ(G/H,∧∗T (G/H)) → Diff∗(G/H) with �rst struture map φ1 = alt, whih
restrits to a L∞-quasi-isomorphism at the level of G-invariants. Let us de�ne

ψ := Q2 ◦ φ ◦ p1 : (Cc(g1[2]), d + [, ]) → (Cc(g2[2]), b + [, ]G); it is a L∞-quasi-

isomorphism with �rst struture map ψ1 = (alt⊗ 1) ◦ (∧·p⊗ ε).
Finally de�ne V := (alt⊗ sym)◦ δ : g1 → g2[−1] and use lemma A.3 to onstrut

a L∞-quasi-morphism Ψ : (Cc(g1[2]), d + [, ]) → (Cc(g2[2]), b + [, ]G) with �rst

struture map Ψ1 = ψ1 + b ◦ V + V ◦ d. Sine for any X ∈ (G1)k, then

b ◦ (alt⊗ sym)(X) = (alt⊗ sym) ◦ d(X) mod (g2)≤k−1

and thus Ψ1(X) = ψ1(X) + bV (X) + V (dX)
= (alt⊗ sym) ◦ (p1 + dδ + δd)(X) mod (g2)≤k−1

= (alt⊗ sym)(X) mod (g2)≤k−1

Consequently Ψ satis�es (F1). Moreover, it follows from remark A.4 that Ψ also

satis�es (F2). ✷

3. Classifiation

Theorem 1.7 implies a stronger result than just the existene of the twist quan-

tization. Namely, sine Ψ is a L∞-quasi-isomorphism there is a bijetion between

the moduli spaes of Maurer-Cartan elements of dgla's (g1[1])[[~]] and (g2[1])[[~]].

3.1. Classi�ation of algebrai and formal dynamial twists. Following [EE1℄,

two dynamial twists J(λ) and J ′(λ) are said to be gauge equivalent if there ex-

ists a regular h-equivariant map T (λ) = exp(q) + O(~) ∈ Reg(h∗, Ug)h[[~]], with
q ∈ Reg(h∗, g)h suh that q(0) = 0, and satisfying

(9) J ′(λ) = T 12(λ) ∗ J(λ) ∗ T 2(λ)−1 ∗ T 1(λ+ ~h2)−1

Dealing with formal funtions one an easily derive an equivalene relation for the

orresponding algebrai dynamial twists K = J(~λ) and K ′ = J ′(~λ):

(10) K ′ = Q12,3K(Q2,3)−1(Q1,23)−1

in (Ug⊗2 ⊗ Uh)h[[~]], with Q = 1 +O(~) ∈ (Ug⊗ Uh)h[[~]] given by T (~λ).

Assume now we are in the redutive ase.

Sine the omposition Q2 ◦φ : (Cc((∧m)h[2]), [, ]m)→ (Cc(g2[2]), b+ [, ]G) in the

previous setion is a L∞-quasi-isomorphism then we have a bijetive orrespondane

(11)

{π ∈ ~(∧2m)h[[~]] s.t. [π, π]m = 0}

G0
←→

{algebrai dynamial twists}

gauge equivalene (10)
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where G0 is the prounipotent group orresponding to the Lie algebra ~mh[[~]].
Moreover, sine the struture maps Qn

2 take values in (g2)≤n−1 then it appears

that any algebrai dynamial twist is gauge equivalent to a one with the ~-adi

valuation property and thus we have a bijetion

(12)

{algebrai dynamial twists}

gauge equivalene (10)
←→

{formal dynamial twists}

gauge equivalene (9)

3.2. Classial ounterpart. Assume that we are in the redutive ase. Sine p1
is a L∞-quasi-isomorphism by propostion 2.1 then we have a bijetion

{α ∈ ~(∧2g⊗ Sh)h[[~]] s.t. dα+ 1
2 [α, α] = 0}

G1
←→

{π ∈ ~(∧2m)h[[~]] s.t. [π, π]m = 0}

G0

where G1 is a prounipotent group and its ation (by a�ne transformations) is given

by the exponentiation of the in�nitesimal ation of its Lie algebra ~(g⊗ Sh)h[[~]]:

(13) q · α = dq + [q, α]
(
q ∈ ~(g⊗ Sh)h[[~]]

)

Then going along the lines of subsetion 2.2 one an prove the following

Proposition 3.1. There exists a L∞-quasi-isomorphism

Q1 : (Cc((∧∗m)h[2]), [, ]m)→ (Cc(g1[2]), d + [, ])

suh that Q1
1 is the natural inlusion and Qn

1 takes values in (g1)≤n−1.

Consequently any Maurer-Cartan element in (g1[1])[[~]] is equivalent to a one of

the form ~ρ~(~λ), where ρ~ ∈ (∧2g⊗̂Ŝh)h[[~]] satis�es CDYBE. In other words ρ~
is ~-dependant formal dynamial r-matrix. On suh a ρ~ the in�nitesimal ation

(13) beomes

(14) q · ρ~ = −
∑

i

hi ∧
∂q

∂λi
+ [q, ρ~] (q ∈ g⊗̂Ŝh)h[[~]]

This ation integrates in an a�ne ation of some group G̃1 of h-equivariant formal

maps with values in the Lie group G of g. And then we have a bijetion

(15)

{π ∈ ~(∧2m)h[[~]] s.t. [π, π]m = 0}

G0
←→

{form. dynam. r-matries/R[[~]]}

G̃1

Remark 3.2. This bijetion has to be ompared with Proposition 2.13 in [X2℄

and setion 3 of [ES℄

Finally, ombining (15), (11) and (12) we obtain the following generalization of

Theorem 6.11 in [X2℄ to the ase of a nonabelian base:

Theorem 3.3. Let π ∈ (∧2m)h suh that [π, π]m = 0. Then there are bijetive

orrespondanes between

(1) the set of ~-dependant and G-invariant Poisson strutures π~ = ~π mod ~2

on G/H, modulo the ation of G0,

(2) the set of ~-dependant formal dynamial r-matries ρ~(λ) suh that ρ~(0) =

π mod ~ in ∧2(g/h)[[~]], modulo the ation (14) of G̃1,

(3) the set of formal dynamial twists J(λ) satisfying Alt

J(0)−1
~

= π mod ~ in

∧2(g/h)[[~]], modulo gauge equivalene (9).
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4. Another ase when the twist quantization exists

In this setion we assume that h is abelian and admits a Lie subalgebra m as

omplement.

Note that sine h is abelian and m a Lie subalgebra, the projetion p : g→ g on

m along h extends to a morphsim of graded Lie algebras ∧·p : (∧g)h → (∧g)h at the

level of h-invariants. And thus ∧·p ⊗ ε : (g1[1], d, [, ]) → ((∧g)h[1], 0, [, ]) is a mor-

phism of dgla's. Then the natural inlusion id⊗1 : (T ∗Ug)h → g2 obviously allows

one to onsider (T ∗Ug)h[1] as a sub-dgla of g2[1]. Finally reall from [Ca, setion

3.3℄ that there exists a L∞-quasi-isomorphism F : Cc((∧∗g)h[2])→ Cc((T ∗Ug)h[2])
with F1 = alt. By omposing these maps one obtains a L∞-morphism

F̃ : (G1, d + [, ])→ (G2, b+ [, ]G)

with values in (G2)≤0 and �rst struture map F̃1 = (alt⊗ 1) ◦ (∧·p⊗ ε).

Theorem 4.1. There exists a L∞-quasi-iomorphism

Ψ : (G1, d + [, ])→ (G2, b+ [, ]G)

with properties (F1) and (F2) of Theorem 1.7.

Proof. First observe that sine h is abelian then g1 ∼= ((∧g)h ∩∧m)⊗∧h⊗ Sh as a

vetor spae. Thus if δK is as in the proof of proposition 2.1 then δ := id⊗ δK is a

homotopy operator: δd + dδ = id− ∧·p⊗ ε and δ ◦ δ = 0.
Now we proeed like in subsetion 2.3: use lemma A.3 to onstrut a L∞-

morphism Ψ with �rst struture map Ψ1 = F̃1 + b ◦ V + V ◦ d, where V :=
(alt⊗ sym) ◦ δ : g1 → g2[−1].

It remains to prove that Ψ is a quasi-isomorphism. It follows from the �rst

observation in this proof that H∗(g1, d) = (∧g)h ∩ ∧m, whih also equals H∗(g2, b)

due to the spetral sequene argument. Consequently F̃1
is a quasi-isomorphism

of omplexes, and so is Ψ1
. �

Finally using the same argumentation as in the proof of theorem 0.2 (subsetion

1.3) one obtains the

Theorem 4.2. If h is an abelian subalgebra of g with a Lie subalgebra as a omple-

ment, then any formal lassial dynamial r-matrix for (g, h, 0) admits a dynamial

twist quantization (assoiated to the trivial assoiator).

Example 4.3. In partiular, this allows us to quantize dynamial r-matries

arizing from semi-diret produts g = m⋉Cn
like in [EN, example 3.7℄.

Conluding remarks

Let us �rst observe that if h is abelian then (∧∗g)h ∩ ∧∗m[1] (resp. (T ∗Ug)h ∩
T ∗sym(Sm)[1]) inherits a dgla struture from the one of g1[1] (resp. g2[1]) and
H∗(g1, d) = (∧∗g)h ∩ ∧∗m = H∗(g2, b), for any omplement m of h. Thus I on-

jeture that there exists a L∞-quasi-isomorphism between (∧∗g)h ∩ ∧∗m[1] and
(T ∗Ug)h ∩ T ∗sym(Sm)[1] whih generalizes together φ of subsetion 2.3 and F of

setion 4. In partiular this would imply onjeture 0.1 in the abelian (and non-

modi�ed) ase.

Let us then mention that one an onsider a non-triangular (i.e., non-antisymmetri)

version of non-modi�ed lassial dynamial r-matries. Namely, h-equivariant maps
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r ∈ Reg(h∗, g ⊗ g) suh that CYB(r) − Alt(dr) = 0. Aording to [X3℄, a quanti-

zation of suh a r is a h-equivariant map R = 1 + ~r +O(~2) ∈ Reg(h∗, Ug⊗2)[[~]]
that satis�es the quantum dynamial Yang-Baxter equation (QDYBE)

(16) R1,2(λ) ∗R1,3(λ+ ~h2) ∗R2,3(λ) = R2,3(λ+ ~h1) ∗R1,3(λ) ∗R1,2(λ+ ~h3)

Question 4.4. Does suh a quantization always exist?

The most famous example of non-triangular dynamial r-matries was found in

[AM℄ by Alekseev and Meinrenken, then extended suessively to a more general

ontext in [EV, ES, EE1℄, and quantized in [EE1℄.

Following [EE1℄, remark that for any non-triangular dynamial r-matrix r suh
that r + rop = t ∈ (S2g)g (quasi-triangular ase) one an de�ne ρ := r − t/2
and Z := 1

4 [t
1,2, t2,3]. Then ρ is a modi�ed dynamial r-matrix for (g, h, Z);

morever the assignment r 7−→ ρ is a bijetive orrespondene between quasi-

triangular dynamial r-matries for (g, h, t) and modi�ed dynamial r-matries

for (g, h, Z). Now observe that if J(λ) is a dynamial twist quantizing ρ, then
R(λ) = Jop(λ)−1 ∗ e~t/2 ∗ J(λ) is a quantum dynamial R-matrix quantizing r.

In this paper we have onstruted suh a dynamial twist in the triangular ase

t = 0. One an ask

Question 4.5. Does suh a dynamial twist exist for any quasi-triangular dynam-

ial r-matrix? At least in the redutive and abelian ases?

This question seems to be more reasonable than the previous one.

More generally one an ask if onjeture 0.1 (and its smooth and meromorphi

versions) is true in general. A positive answer was given in [EE1℄ when h = g; but

unfortunately it is not known in general, even for the non-dynamial ase h = {0}
(whih is the last problem of Drinfeld [Dr1℄: quantization of oboundary Lie bial-

gebras).

Finally let me mention that if r(λ) is a triangular dynamial r-matrix for (g, h),
then the bivetor �eld

π :=
−−→
r(λ) +

∑

i

∂

∂λi
∧
−→
hi + πh∗

is a G×H-biinvariant Poisson struture on G×h∗ and the projetion p : G×h∗ → h∗

is a momentum map. Moreover, aording to [X3℄ any dynamial twist quantization

J(λ) of r(λ) allows us to de�ne a G×H-biinvariant star-produt ∗ quantizing π on

G× h∗ as follows:

f ∗ g = f ∗PBW g if f, g ∈ C∞(h∗)
f ∗ g = fg if f ∈ C∞(G), g ∈ C∞(h∗)

f ∗ g = exp
(
~
∑

i
∂

∂λi ⊗
−→
hi
)
· (f ⊗ g) if f ∈ C∞(h∗), g ∈ C∞(G)

f ∗ g =
−−→
J(λ)(f ⊗ g) if f, g ∈ C∞(G)

This way the map p∗ : (Fct(h∗)[[~]], ∗PBW )→ (Fct(G×h∗)[[~]], ∗) beomes a quan-

tum momentum map in the sens of [X1℄.

So there may be a way to see momentum maps and their quantum analogues as

Maurer-Cartan elements in dgla's.
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Appendix A. Homotopy Lie algebras

See [HS℄ for a detailed disussion of the theory.

Reall that a L∞-algebra struture on a graded vetor spae g is a degree 1
oderivation Q on the ofree oommutative oalgebra Cc(g[1]) suh that Q◦Q = 0.
By ofreeness, suh a oderivation Q is uniquely determined by struture maps

Qn : Λng→ g[2− n] whih satisfy an in�nite olletion of equations. In partiular

(g, Q1) is a ohain omplex.

Example A.1. Any dgla (g, d, [, ]) is anonially a L∞-algebra. Namely, Q is

given by struture maps Q1 = d, Q2 = [, ] and Qn = 0 for n > 2.

A L∞-morphism between two L∞-algebras (g1, Q1) and (g2, Q2) is a degree 0
morphism of oalgebras F : Cc(g1[1]) → Cc(g2[1]) suh that F ◦ Q1 = Q2 ◦ F .
Again by ofreeness, suh a morphism is uniquely determined by struture maps

Fn : Λng1 → g2[1−n] whih satisfy an in�nite olletion of equations. In partiular
F 1 : g1 → g2 is a morphism of omplexes; when it indues an isomorphism in

ohomology we say that F is a L∞-quasi-isomorphism.

Example A.2. Any morphism of dgla's is a L∞-morphism with all struture

maps equal to zero exept the �rst one.

In this paper we use many times the following

Lemma A.3 ([Do℄). Let F : Cc(g1[1]) → Cc(g2[1]) be a L∞-morphism. For any

linear map V : g1 → g2[−1] there exists a L∞-morphism Ψ : Cc(g1[1])→ Cc(g2[1])
with �rst struture map Ψ1 = F 1+Q1

2 ◦V +V ◦Q1
1. Moreover, if F is a L∞-quasi-

isomorphism then Ψ is also.

Proof. First remark that V extends uniquely to a linear map Cc(g1[1])→ Cc(g2[1])
of degree −1 suh that

∆2 ◦V =
(
F ⊗V +V ⊗F +

1

2
V ⊗ (Q2 ◦V +V ◦Q1)+

1

2
(Q2 ◦V +V ◦Q1)⊗V

)
◦∆1

where ∆1 and ∆2 denote omultipliations in C
c(g1[1]) and C

c(g2[1]), respetively.
Then de�ne Ψ := F +Q2 ◦ V + V ◦Q1. �

Remark A.4. Assume that in the previous lemma g1 and g2 are �ltrated, F is

suh that Fn
takes values in (g2)≤n−1, and V

(
(g1)≤k

)
⊂ (g2)≤k+1. Then one an

obviously hek that for any X ∈ (Λng1)≤k, F
n(X) ∈ (g2)≤n+k−1.
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