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4 Decompositions of Reflexive Bimodules over

Maximal Abelian Selfadjoint Algebras

G. Eleftherakis

Abstract

We generalize the notion of ‘diagonal’ from the class of CSL al-
gebras to masa bimodules. We prove that a reflexive masa bimodule
decomposes as a sum of two bimodules, the diagonal and a module
generalizing the w*-closure of the Jacobson radical of a CSL algebra.
The latter module turns out to be reflexive, a result which is new
even for CSL algebras. We show that the projection onto the direct
summand contained in the diagonal is contractive and preserves com-
pactness and reduces rank of operators. Stronger results are obtained
when the module is the reflexive hull of its rank-one subspace.

Keywords: Operator algebras, reflexivity, TRO, masa-bimodules
MSC (2000) : Primary 47L05; Secondary 47L35, 46L10

1 Introduction

In this paper we attempt a generalisation of the concept of the diagonal of a
CSL algebra to reflexive spaces of operators which are modules over maximal
abelian selfadjoint algebras (masas).

Recall [2] that a CSL algebra is an algebra A of operators on a Hilbert
space H which can be written in the form

A = {A ∈ B(H) : AP = PAP for all P ∈ S}

where S is a commuting family of projections. Note that A contains any
masa containing S ′′.

More generally, a reflexive masa bimodule U of operators from H to
another Hilbert space K can be written in the form

U = {T ∈ B(H,K) : TP = φ(P )TP for all P ∈ S}
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where S is a commuting family of projections on H and φ maps them to
commuting projections on K (see below for details).

The diagonal A ∩A∗ of a CSL algebra A is a von Neumann algebra,
which equals the commutant

S ′ = {A ∈ B(H) : AP = PA for all P ∈ S}

of the corresponding invariant projection family. The natural corresponding
object for a reflexive masa bimodule U is a ternary ring of operators (TRO)

∆(U) = {T ∈ B(H,K) : TP = φ(P )T for all P ∈ S}

which is also a reflexive masa bimodule.
This ‘diagonal’ ∆(U) is the primary object of study of the present paper.
We decompose U as a sum U0 + ∆(U), where U0 also turns out to be

reflexive (Theorem 5.2). This is new even for the case of CSL algebras;
note, however, that for nest algebras reflexivity of w*-closed bimodules is
automatic [7]. An analogous decomposition for the case of nest subalgebras
of von Neumann algebras is in [11].
We also prove (Corollary 5.3) that the bimodule U0 has in our context the
role corresponding to the w∗ closure of the Jacobson radical of a CSL algebra.

The diagonal ∆(U) is proved to be generated by a partial isometry and
natural von Neumann algebras assosiated to U (Theorem 4.1).

The above decomposition may be further refined to a direct sum: U =
U0 ⊕ M where M is a TRO ideal of the diagonal ∆(U) (Theorem 3.3),
containing the compact operators of the diagonal (Proposition 6.3).

In case U is strongly reflexive (that is, coincides with the reflexive hull of
the rank one operators it contains) we show (Theorem 7.4) that M coincides
with the w*-closed linear span of the finite rank operators of the diagonal,
an equality which fails in general.

As in the case of von Neumann algebras, we show that every TRO de-
composes in an ‘atomic’ and a ‘nonatomic’ part. The ‘atomic’ part of the
diagonal ∆(U) is contained (properly in general) in M (Proposition 6.3).

We also study the projection θ : U −→ M defined by the above direct sum
decomposition. We prove that it is contractive and maps compact operators
to compact operators and finite rank operators to operators of at most the
same rank.

In case U is strongly reflexive, we show that θ = D|U , where D is the
natural projection onto the ‘atomic’ part of the diagonal ∆(U).
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A main tool used to obtain these results is an appropriate sequence of
projections (Un) on B(H,K) which depend on U . This sequence behaves
analogously to the net of ‘diagonal sums’ used in nest algebras (see for ex-
ample [2]).

In nest algebra theory, the net of diagonal sums of a compact operator
converges in norm to a compact operator in the ‘atomic’ part of the diagonal.
This has been generalised to CSL algebras by Katsoulis [10]. Here we show
(Proposition 6.10) that for every compact operator K, the sequence (Un(K))
converges in norm to D(K).

We present some definitions and concepts we use in this work. All Hilbert
spaces will be assumed separable.

If S is a set of operators then R1(S) denotes the subset of S which contains
the rank 1 operators and the zero operator. If H is a Hilbert space and
S ⊂ B(H), the set of orthogonal projections of S is denoted by P(S).

If H1, H2 are Hilbert spaces, C1(H1, H2) are the trace class operators and
R a subset of C1(H1, H2), we denote by R0 the set of operators which are
annihilated by R :

R0 = {T ∈ B(H2, H1) : tr(TS) = 0 for all S ∈ R}.

Let H1, H2 be Hilbert spaces and U a subset of B(H1, H2). Then the
reflexive hull of U is defined [12] to be the space

Ref(U) = {T ∈ B(H1, H2) : Tx ∈ [Ux] for each x ∈ H1}.

Simple arguments show that

Ref(U) = {T ∈ B(H1, H2) : for all projections E, F : EUF = 0 ⇒ ETF = 0}

A subspace U is called reflexive if U = Ref(U). It is called strongly re-

flexive if there exists a set L ⊂ B(H1, H2) of rank 1 operators such that U =
Ref(L).

Now we present some concepts introduced by Erdos [5].

Let Pi = P(B(Hi)), i = 1, 2. Define φ = Map(U) to be the map φ :
P1 → P2 which associates to every P ∈ P1 the projection onto the subspace
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[TPy : T ∈ U , y ∈ H1]
−. The map φ is ∨−continuous (that is, it preserves

arbitrary suprema) and 0 preserving.

Let φ∗ = Map(U∗),S1,φ = {φ∗(P )⊥ : P ∈ P2},S2,φ = {φ(P ) : P ∈ P1}.
Erdos has proved that S1,φ is meet complete and contains the identity pro-
jection, S2,φ is join complete and contains the zero projection, while φ|S1,φ

:
S1,φ → S2,φ is a bijection. In fact

(φ|S1,φ
)−1(Q) = φ∗(Q⊥)⊥ (1.1)

for all Q ∈ S2,φ and

Ref(U) = {T ∈ B(H1, H2) : φ(P )
⊥TP = 0 for each P ∈ S1,φ}.

We call the families S1,φ,S2,φ the semilattices of U .

A C.S.L. is a complete abelian lattice of projections which contains the
identity and the zero projection.

IfA1 ⊂ B(H1), andA2 ⊂ B(H2) are algebras, a subspace U ⊂ B(H1, H2) is
called an A1,A2−bimodule if A2UA1 ⊂ U .

A subspace M of B(H1, H2) is called a ternary ring of operators

(TRO) if MM∗M ⊂ M. Katavolos and Todorov [9] have proved that a
TRO M is w∗ closed if and only if it is wot closed if and only if it is reflexive.
In this case, if χ = Map(M), then

M = {T ∈ B(H1, H2) : TP = χ(P )T for all P ∈ S1,χ}.

They also proved that if M is a strongly reflexive TRO, then there ex-
ist families of mutually orthogonal projections (Fn), (En) such that M =∑∞

n=1⊕EnB(H1, H2)Fn. We present a new proof of this result in Corollary
6.9.

The following proposition is easily proved.

Proposition 1.1 Let H1, H2 be Hilbert spaces, A1 ⊂ B(H1),A2 ⊂ B(H2)
masas and U a A1,A2−bimodule. Then

Ref(U) = {T ∈ B(H1, H2) : E ∈ P(A2), F ∈ P(A1), EUF = 0 ⇒ ETF = 0}.

The next section contains some preliminary results.
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2 Decomposition of a reflexive TRO.

In this section we show that a w∗−closed TRO decomposes into a ‘nonatomic’
and a ‘totaly atomic’ part.

Let H1, H2 be Hilbert spaces, M ⊂ B(H1, H2) be a w∗-closed TRO and
B1 = (M∗M)′′,B2 = (MM∗)′′.

Remark 2.1 We suppose that M0 is a w
∗−closed TRO ideal of M; namely,

M0 is a linear subspace of M and

M0M
∗M ⊂ M0, MM∗M0 ⊂ M0.

It follows that MM∗
0M ⊂ M0 [4].

Now, we observe that there exist projections Qi in the centre of Bi, i = 1, 2
such that M0 = MQ1 = Q2M. Hence M0 is a B1,B2−bimodule.

Proof

Let J1 = [M∗
0M0]

−w∗

and J2 = [M0M∗
0]
−w∗

.

We can easily verify that Ji is an ideal of Bi, i = 1, 2. Hence there is a
projection Qi in the centre of Bi so that Ji = BiQi, i = 1, 2.

One easily checks that

MB1 ⊂ M, B2M ⊂ M,

MJ1 ⊂ M0, J2M ⊂ M0

We observe that MQ1 ⊂ MJ1 ⊂ M0.

Let T ∈ M0 then T
∗T ∈ J1, so T

∗T = T ∗TQ1 and thus T = TQ1. Hence
T ∈ MQ1. We conclude that M0 ⊂ MQ1 and hence equality holds.

Similarly one shows that M0 = Q2M. �

Since [R1(M)]−w
∗

is a strongly reflexive TRO, by Proposition 3.5 in [9]
there exist mutually orthogonal projections (Fn) in the centre of B1 and
(En) in the centre of B2 such that [R1(M)]−w

∗

=
∑∞

n=1⊕EnB(H1, H2)Fn.
We write E = ∨nEn, F = ∨nFn.

Theorem 2.2 The space M decomposes in the following direct sum

M = (M∩ (R1(M)∗)0)⊕ [R1(M)]−w
∗

.
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The spaces M∩(R1(M)∗)0 and [R1(M)]−w
∗

are TRO ideals of M. Moreover

[R1(M)]−w
∗

= MF = EM = EMF

M∩ (R1(M)∗)0 = MF⊥ = E⊥M = E⊥MF⊥.

Proof

We observe that [R1(M)]−w
∗

is a TRO ideal of M.

By Remark 2.1 there exists projection Q in the centre of B1 such that
[R1(M)]−w

∗

= MQ.

For every m ∈ N, we have EmB(H1, H2)Fm ⊂ MQ.

It follows that EmB(H1, H2)Fm = EmB(H1, H2)FmQ, so Fm = FmQ. We
conclude that ∨mFm = F ≤ Q.

Since F ∈ B1 we get MF ⊂ M, therefore MF = MFQ ⊂ MQ.

It follows that

[R1(M)]−w
∗

= MQ ⊃ MF ⊃ [R1(M)]−w
∗

F = [R1(M)]−w
∗

.

We proved that [R1(M)]−w
∗

= MF.

If M ∈ M and R ∈ R1(M), then R = RF so tr(MF⊥R∗)
= tr(M(RF⊥)∗) = tr(M0) = 0.

We conclude that

MF⊥ ⊂ M∩ (R1(M)∗)0

Hence M = MF⊥ +MF ⊂ M∩ (R1(M)∗)0 + [R1(M)]−w
∗

⊂ M.

It follows that

M = (M∩ (R1(M)∗)0) + [R1(M)]−w
∗

.

We shall prove that this sum is direct.

If T ∈ [R1(M)]−w
∗

∩ (R1(M)∗)0 then T =
∑∞

n=1EnTFn. If R is a rank 1
operator then tr(TR) =

∑∞
n=1 tr(EnTFnR) =

∑∞
n=1 tr(TFnREn).

But for every n ∈ N, tr(TFnREn) = tr(T (EnR
∗Fn)

∗) = 0 since EnR
∗Fn ∈

R1(M) and T ∈ (R1(M)∗)0.

Thus tr(TR) = 0 for every rank 1 operator R, hence T = 0. This shows
that [R1(M)]−w

∗

∩ (R1(M)⊥)∗ = 0.
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We have shown that M = (M∩ (R1(M)∗)0)⊕ [R1(M)]−w
∗

.

Since M = MF⊥ ⊕MF, [R1(M)]−w
∗

= MF and
MF⊥ ⊂ M∩ (R1(M)∗)0 we conclude that

MF⊥ = M∩ (R1(M)∗)0.

The equalities E⊥M = M∩ (R1(M)∗)0, EM = [R1(M)]−w
∗

are proved
similarly. �

Proposition 2.3 Let θ : M −→ M be the projection onto [R1(M)]−w
∗

defined by the decomposition in Theorem 2.2. Then θ(T ) =
∑∞

n=1EnTFn for
every T ∈ M.

Proof

Since M decomposes as the direct sum of the B1,B2−bimodules
M∩ (R1(M)∗)0 and [R1(M)]−w

∗

, θ is a B1,B2−bimodule map:

θ(B2TB1) = B2θ(T )B1

for every T ∈ M, B1 ∈ B1, B2 ∈ B2.

Since (En) ⊂ B1, (Fn) ⊂ B2 we have that:

θ(T ) =
∞∑

n=1

Enθ(T )Fn =
∞∑

n=1

θ(EnTFn) =
∞∑

n=1

EnTFn. �

3 Decomposition of a reflexive masa bimod-

ule

Let H1, H2 be Hilbert spaces, Pi = P(B(Hi)), i = 1, 2, Di ⊂ B(Hi), i = 1, 2
be masas, U ⊂ B(H1, H2) be a reflexive D1,D2−bimodule. Write

φ = Map(U), φ∗ = Map(U∗),

S2,φ = φ(P1), S1,φ = {P⊥ : P ∈ φ∗(P2)}

A2 = (S2,φ)
′, A1 = (S1,φ)

′.

Observe that Si,φ ⊂ Di hence Di ⊂ Ai, i = 1, 2. We define

U0 = [φ(P )TP⊥ : T ∈ U , P ∈ S1,φ]
−w∗

,
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∆(U) = {T : TP = φ(P )T for all P ∈ S1,φ}.

We remark that U0 and ∆(U) are D1,D2−bimodules contained in U and
∆(U) is a reflexive TRO. We call ∆(U) the diagonal of U .

Theorem 3.1 U = U0 +∆(U).

Proof

As noted in the introduction

U = {T ∈ B(H1, H2) : φ(P )
⊥TP = 0 for all P ∈ S1,φ}.

Since the Hilbert spaces H1, H2 are separable we can choose a sequence
(Pn) ⊂ S1,φ such that

U = {T ∈ B(H1, H2) : φ(Pn)
⊥TPn = 0 for all n ∈ N}.

We define

Vn : B(H1, H2) → B(H1, H2) : Vn(T ) = φ(Pn)TPn + φ(Pn)
⊥TP⊥

n , n ∈ N.

One easily checks that Vn is idempotent and a norm contraction.

We also define Un = Vn ◦ Vn−1 ◦ ... ◦ V1, n ∈ N.

Let T ∈ U , then
T = U1(T ) + φ(P1)TP

⊥
1

U1(T ) = U2(T ) + φ(P2)U1(T )P
⊥
2

by induction
Un−1(T ) = Un(T ) + φ(Pn)Un−1(T )P

⊥
n

for all n ∈ N.

Adding the previous equalities we obtain

T = Un(T ) +Mn

where

Mn = φ(P1)TP
⊥
1 + φ(P2)U1(T )P

⊥
2 + ... + φ(Pn)Un−1(T )P

⊥
n ∈ U0
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for all n ∈ N.

We observe that φ(Pi)
⊥Un(T )Pi = φ(Pi)Un(T )P

⊥
i = 0 for i = 1, 2, ...n

and ‖Un(T )‖ ≤ ‖Un−1(T )‖ ≤ ... ≤ ‖T‖ for all n ∈ N.

The sequence (Un(T )) is bounded, so there exists a subsequence (Unm
(T ))

that converges in the weak−∗ topology to an operator L.

Then Mnm
= T − Unm

(T )
w∗

→ T − L =M ∈ U0.

Since φ(Pi)
⊥LPi = φ(Pi)LP

⊥
i = 0 for all i ∈ N we have L ∈ ∆(U) and

T =M + L ∈ U0 +∆(U). �

Remark 3.2 The following are equivalent:
i) U is a TRO
ii) U = ∆(U)
iii) U0 = 0.

Theorem 3.3 There exist projections Qi ∈ Di, i = 1, 2 such that:

U = U0 ⊕ (I −Q2)∆(U)(I −Q1) = U0⊕ (I −Q2)∆(U) = U0⊕∆(U)(I −Q1).

Proof

We make the following observations:

i) U∆(U)∗∆(U) ⊂ U , ∆(U)∗∆(U)U ⊂ U .
Proof
Let T ∈ U ,M,N ∈ ∆(U). Then for every P ∈ S1,φ we have
φ(P )⊥TM∗NP = φ(P )⊥TM∗φ(P )N = φ(P )⊥TPM∗N = 0M∗N = 0.
Thus TM∗N ∈ U . Similarly we have that MN∗T ∈ U .

ii) U0∆(U)∗∆(U) ⊂ U0, ∆(U)∆(U)∗U0 ⊂ U0.

Proof
Let T ∈ U ,M,N ∈ ∆(U). Then for every P ∈ S1,φ we have
φ(P )TP⊥M∗N = φ(P )TM∗φ(P )⊥N = φ(P )TM∗NP⊥.

It follows by (i) that TM∗N ∈ U so φ(P )TP⊥M∗N ∈ U0.

Taking the w∗ closed linear span we get SM∗N ∈ U0 for all S ∈ U0,M,N ∈
∆(U). Similarly we have that ∆(U)∆(U)∗U0 ⊂ U0.

iii) The space U0 ∩∆(U) is a TRO ideal of ∆(U).
Proof
Since ∆(U) is a TRO (U0 ∩∆(U))∆(U)∗∆(U) ⊂ ∆(U).
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Using observation (ii) we have that (U0 ∩∆(U))∆(U)∗∆(U) ⊂ U0.

It follows that (U0 ∩∆(U))∆(U)∗∆(U) ⊂ U0 ∩∆(U).
Analogously we get ∆(U)∆(U)∗(U0 ∩∆(U)) ⊂ U0 ∩∆(U).
We conclude that the space U0 ∩∆(U) is a TRO ideal of ∆(U).

So there exist projections Qi ∈ Di, i = 1, 2, such that U0 ∩ ∆(U) =
∆(U)Q1 = Q2∆(U) (Remark 2.1).

By Theorem 3.1 we have

U = U0 +∆(U) = U0 +∆(U)Q1 +∆(U)(I −Q1) = U0 +∆(U)(I −Q1).

Clearly U0 ∩∆(U)(I −Q1) = 0.

Similarly one shows that U = U0 ⊕ (I −Q2)∆(U) and it therefore follows
that U = U0 ⊕ (I −Q2)∆(U)(I −Q1). �

Remark 3.4 The projection θ : U → U onto (I −Q2)∆(U)(I −Q1) defined
by the decomposition in Theorem 3.3 is a contraction.

Indeed, if T ∈ U , as in Theorem 3.1 we have T = M + S where M ∈
∆(U), S ∈ U0 and ‖M‖ ≤ ‖T‖ (see the proof).
Since θ(T ) = (I −Q2)M(I −Q1), we obtain ‖θ(T )‖ ≤ ‖T‖.

Let Ni = Alg(Si,φ) = {T : P⊥TP = 0 for all P ∈ Si,φ}, i = 1, 2, and
Li = [PTP⊥ : T ∈ Ni, P ∈ Si,φ]

−w∗

, i = 1, 2.

Lemma 3.5 i) A2∆(U)A1 ⊂ ∆(U).
ii) ∆(U)∗A2∆(U) ⊂ A1,∆(U)A1∆(U)∗ ⊂ A2.

iii) U = N2UN1.

iv) U0 = N2U0N1.

v) UL1 ⊂ U0, L2U ⊂ U0.

vi) ∆(U)∗U ⊂ N1, U∆(U)∗ ⊂ N2.

vii) ∆(U)∗U0 ⊂ L1, U0∆(U)∗ ⊂ L2.

Proof

Claims (i), (ii) are obvious and (iii) is Lemma 1.1 in [9].

iv) If N1 ∈ N1, N2 ∈ N2, T ∈ U and P ∈ S1,φ then

N2φ(P )TP
⊥N1 = φ(P )N2φ(P )TP

⊥N1P
⊥ ∈ U0
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since N2φ(P )TP
⊥N1 ∈ U by (iii). Taking the w∗ closed linear span we get

N2U0N1 ⊂ U0.

v) If N1 ∈ N1, T ∈ U and P ∈ S1,φ then

TPN1P
⊥ = φ(P )TPN1P

⊥ ∈ U0

since TPN1 ∈ UN1 ⊂ U . Taking the w∗ closed linear span we get TK ∈ U0

for every K ∈ L1.

The second inclusion follows by symmetry.

vi) Let M ∈ ∆(U), T ∈ U , P ∈ S1,φ. Then PM∗TP = M∗φ(P )TP =
M∗TP so M∗T ∈ N1.

Similarly one shows that TM∗ ∈ N2.

vii) LetM ∈ ∆(U), T ∈ U , P ∈ S1,φ thenM
∗φ(P )TP⊥ = PM∗TP⊥ ∈ L1

since M∗T ∈ ∆(U)∗U ⊂ N1.Taking the w∗ closed linear span we get M∗S ∈
L1 for every S ∈ U0.

Similarly one shows that U0∆(U)∗ ⊂ L2. �

Proposition 3.6 The following are equivalent:

i) U = U0.

ii) ∆(U)∗∆(U) ⊂ L1 ∩A1.

iii) ∆(U)∆(U)∗ ⊂ L2 ∩A2.

Proof

If U = U0 then ∆(U) ⊂ U0, hence ∆(U)∗∆(U) ⊂ ∆(U)∗U0 ⊂ L1 by the
previous lemma.
Since ∆(U)∗∆(U) ⊂ A1 we get ∆(U)∗∆(U) ⊂ L1 ∩A1.

If conversely ∆(U)∗∆(U) ⊂ L1∩A1, then ∆(U)∗∆(U)(I−Q1) ⊂ L1∩A1,

so by the previous lemma ∆(U)∆(U)∗∆(U)(I −Q1) ⊂ UL1 ⊂ U0.

(Q1 is the projection in Theorem 3.3).
Since U0 ∩ ∆(U) is a TRO ideal of ∆(U) (Theorem 3.3) we have that
∆(U)∆(U)∗∆(U)Q1 = ∆(U)∆(U)∗(∆(U) ∩ U0) ⊂ ∆(U) ∩ U0 ⊂ U0.

We conclude that ∆(U)∆(U)∗∆(U) ⊂ U0.

Since ∆(U) is a TRO its subspace ∆(U)∆(U)∗∆(U) is norm-dense [4].
Therefore ∆(U) ⊂ U0 and so U = U0.

The equivalence (i) ⇔ (iii) is proved similarly. �
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Proposition 3.7 The following are equivalent:

i) U = U0 ⊕∆(U).

ii) ∆(U) (L1 ∩A1) = 0.

iii) (L2 ∩ A2) ∆(U) = 0.

Proof

Note by Lemma 3.5 that ∆(U)(L1 ∩A1) ⊂ ∆(U)A1 ⊂ ∆(U) and
∆(U)(L1 ∩ A1) ⊂ UL1 ⊂ U0.

Thus if the sum U = U0 +∆(U) is direct then ∆(U) (L1 ∩ A1) = 0.

Suppose conversely that ∆(U)(L1 ∩ A1) = 0.
Using again Lemma 3.5 we have that (U0∩∆(U))∗(U0∩∆(U)) ⊂ ∆(U)∗∆(U)
⊂ A1 and (U0 ∩∆(U))∗(U0 ∩∆(U)) ⊂ ∆(U)∗U0 ⊂ L1 so
(U0∩∆(U))∗(U0∩∆(U)) ⊂ L1∩A1 and so (U0∩∆(U))(U0∩∆(U))∗(U0∩∆(U))
⊂ ∆(U)(L1 ∩A1) = 0.

But since U0 ∩ ∆(U) is a TRO (Theorem 3.3), its subspace
(U0∩∆(U))(U0∩∆(U))∗(U0∩∆(U)) is norm-dense [4]. Therefore U0∩∆(U) =
0.

This shows that (i)and (ii) are equivalent.

The proof of the equivalence of (i) and (iii) is analogous. �

4 The diagonal

Let U ,U0,∆(U), φ be as in section 3 and χ = Map(∆(U)).

Theorem 4.1 There exists a partial isometry V ∈ ∆(U) such that ∆(U) =
[A2VA1]

−w∗

(recall that Ai = (Si,φ)′).

Proof

If T ∈ ∆(U) and T = U |T | is the polar decomposition of T, then U ∈
∆(U) and |T | ∈ A1 : Proposition 2.6 in [9].

By Zorn’s lemma there exists a maximal family of partial isometries
(Vn) ⊂ ∆(U) such that: V ∗

n Vn⊥V
∗
mVm, VnV

∗
n⊥VmV

∗
m for n 6= m.

Let V =
∑∞

n=1 Vn. Then V is a partial isometry in ∆(U).
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First we show that

∆(U) = {T ∈ B(H1, H2) : E ∈ P(A′
1), F ∈ P(A′

2), FV E = 0 ⇒ FTE = 0}
(4.1)

Let T be such that, if FV E = 0 for E ∈ P(A′
1) and F ∈ P(A′

2), then
FTE = 0. Since φ(P )⊥V P = φ(P )V P⊥ = 0 for every P ∈ S1,φ and Si,φ ⊂
A′
i, i = 1, 2 we have φ(P )⊥TP = φ(P )TP⊥ = 0 for every P ∈ S1,φ so

T ∈ ∆(U).

For the converse let T ∈ ∆(U) and T = U |T | be the polar decomposition
of T.

If E ∈ P(A′
1),F ∈ P(A′

2) are such that FV E = 0, since |T | ∈ A1, we
have FTE = FU |T |E = FUE|T |.

Hence it suffices to show that FUE = 0.

We observe that:

V ∗V (FUE)∗FUE = (V ∗V )EU∗FUE = E(V ∗V )U∗FUE (V ∗V ∈ A1)

= EV ∗(V U∗)FUE = EV ∗F (V U∗)UE (V U∗ ∈ A2)

= 0V U∗UE = 0

hence
(FUE)∗FUE ≤ I − V ∗V. (4.2)

Similarly, one shows that

FUE(FUE)∗ ≤ I − V V ∗. (4.3)

Since FUE is a partial isometry in ∆(U), the maximality of V and
(4.2),(4.3) imply that FUE = 0.

Thus claim (4.1) holds.

Let M = [A2VA1]
−w∗

.

We observe that M is a TRO which is contained in ∆(U). Since M is w∗

closed, it is reflexive.

If ζ = Map(M) then for every projection P ,

ζ(P ) = [A2V A1Py : Ai ∈ Ai, i = 1, 2, y ∈ H1]
−.

13



We observe that ζ(P ) ∈ A′
2 for every projection P so S2,ζ ⊂ A′

2. Similarly
if ζ∗ = Map(M∗) then S2,ζ∗ ⊂ A′

1 but S1,ζ = {P⊥ : P ∈ S2,ζ∗} so we have
that S1,ζ ⊂ A′

1.

Now since V ∈ M we conclude that ζ(P )⊥V P = 0 for every P ∈ S1,ζ .

From claim (4.1) we obtain ζ(P )⊥∆(U)P = 0 for every P ∈ S1,ζ , so since
M is reflexive ∆(U) ⊂ M. �

By the previous theorem it follows that if M is a w∗−closed TRO masa
bimodule and ζ = Map(M) then there exists a partial isometry V ∈ M so
that M = [(S2,ζ)

′V (S1,ζ)
′]−w

∗

.

But we shall prove a stronger result:

Theorem 4.2 LetM a w∗−closed TRO masa bimodule and B1 = [M∗M]−w
∗

B2 = [MM∗]−w
∗

. Then there exists a partial isometry V such that M =
[B2V B1]

−w∗

.

Proof

Let Di ⊂ B(Hi), i = 1, 2 be masas such that D2MD1 ⊂ M and put
ζ = Map(M).
We shall prove that B′

2MB′
1 ⊂ M.

In [9], Theorem 2.10 it is shown that

B′
2 = (MM∗)′ ⊂ D2|ζ(I) ⊕ B(ζ(I)⊥(H2))

and
B′
1 = (M∗M)′ ⊂ D1|ζ∗(I) ⊕B(ζ∗(I)⊥(H1)).

So it suffices to show that

(D2|ζ(I) ⊕ B(ζ(I)⊥(H2))) M (D1|ζ∗(I) ⊕ B(ζ∗(I)⊥(H1))) ⊂ M.

But this is true because D2MD1 ⊂ M, ζ(I) ∈ D2, ζ
∗(I) ∈ D1 and M =

ζ(I)Mζ∗(I).

Now, we shall follow the proof of the previous theorem:
By Zorn’s lemma there exists a maximal family of partial isometries (Vn) ⊂
M such that: V ∗

n Vn⊥V
∗
mVm, VnV

∗
n⊥VmV

∗
m for n 6= m.

Let V =
∑∞

n=1 Vn. Then V is a partial isometry in M.

We shall show that

M ⊂ {T ∈ B(H1, H2) : E ∈ P(B′
1), F ∈ P(B′

2), FV E = 0 ⇒ FTE = 0}
(4.4)

14



Let T ∈ M and T = U |T | be the polar decomposition of T. Then |T | ∈
(M∗M)′′ and U ∈ M, (Proposition 2.6 in [9]).
If E ∈ P(B′

1), F ∈ P(B′
2) are such that FV E = 0, since |T | ∈ (M∗M)′′ and

E ∈ B′
1 = (M∗M)′, we have FTE = FU |T |E = FUE|T |. Hence it suffices

to show that FUE = 0.

As in the proof of the previous theorem we have that V ∗V⊥(FUE)∗(FUE)
and V V ∗⊥(FUE)(FUE)∗.
But FUE ∈ B′

2MB′
1 ⊂ M, so by the maximality of V we have that

FUE = 0.

Let W = [B2V B1]
−w∗

. We observe that W ⊂ M.

For the converse, we follow the proof of the previous theorem and we use the
relation (4.4) �

An alternative proof of the previous theorem was communicated to us by
I. Todorov, based on his paper [14].

Theorem 4.3 The semilattices of ∆(U) are the following:

S1,χ = χ∗(I)⊥ ⊕ χ∗(I)P((S1,φ)
′′)

S2,χ = χ(I)P((S2,φ)
′′).

The map χ : S1,χ −→ S2,χ is such that

χ(χ∗(I)⊥ ⊕ χ∗(I)Q) = χ(I)φ(Q) for every Q ∈ S1,φ. (4.5)

Proof

i) In Theorem 4.1 we showed that there exists a partial isometry V in
∆(U) such that ∆(U) = [(S2,φ)

′V (S1,φ)
′]−w

∗

.

So if P ∈ S1,χ then χ(P ) is the projection onto [(S2,φ)
′V (S1,φ)

′P (H1)]
−.

We conclude that χ(P ) ∈ (S2,φ)
′′. Hence S2,χ ⊂ (S2,φ)

′′.

If H is a Hilbert space, B is a subset of B(H) and Q a projection in B′

the set {T |Q(H) : T ∈ B} is denoted by B|Q.

We have shown that (S2,χ)
′′|χ(I) ⊂ (S2,φ)

′′|χ(I).

Let P ∈ S1,φ then ∆(U)P = φ(P )∆(U). Hence χ(P ) = φ(P )χ(I).

So χ(I)S2,φ ⊂ S2,χ hence, (S2,φ)
′′|χ(I) ⊂ (S2,χ)

′′|χ(I).
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We proved that
(S2,φ)

′′|χ(I) = (S2,χ)
′′|χ(I).

Since ∆(U) is a TRO, using Theorem 2.10 in [9] (see the proof) we have
that

S2,χ|χ(I) = P((S2,χ)
′′|χ(I)).

It follows that
S2,χ = χ(I)P((S2,φ)

′′).

Applying this to ∆(U)∗ = ∆(U∗),

S2,χ∗ = χ∗(I)P((S2,φ∗)
′′).

Since S1,φ = {Q⊥ : Q ∈ S2,φ∗}, see the introduction, we have that

S2,χ∗ = χ∗(I)P((S1,φ)
′′).

But

S1,χ = {Q⊥ : Q ∈ S2,χ∗} = {(χ∗(I)Q)⊥ : Q ∈ P((S1,φ)
′′)}

= {χ∗(I)⊥ ⊕ χ∗(I)Q : Q ∈ P((S1,φ)
′′)}.

ii) If Q ∈ S1,φ then

χ(χ∗(I)⊥ ⊕ χ∗(I)Q) = χ(χ∗(I)Q) (χ(χ∗(I)⊥) = 0)

= χ(Q) (∆(U)χ∗(I) = ∆(U))

= φ(Q)χ(I). (∆(U)Q = φ(Q)∆(U))

�

Remark 4.4 The smallest ortholattice containing the commutative family
χ(I)S2,φ is easily seen to be χ(I)P((S2,φ)

′′), which equals S2,χ; similarly the
family χ∗(I)⊥ ⊕ χ∗(I)S1,φ generates the complete ortho-lattice S1,χ.

Therefore, since χ|S1,χ
is a complete ortho-lattice isomorphism (Theorem

2.10 in [9]) equality (4.5) determines the map χ.

16



Proposition 4.5 The families χ∗(I)S1,φ and χ(I)S2,φ are complete lattices
and the map

ϑ : χ∗(I)S1,φ → χ(I)S2,φ : ϑ(χ
∗(I)P ) = χ(I)φ(P )

is a complete lattice isomorphism.

Proof

We use Theorem 4.3 and the fact [9] that the map χ|S1,χ
is a complete

ortholattice isomorphism .

Let (Pi)i∈I ⊂ S1,φ. We claim that

∧i∈Iχ(I)φ(Pi) = χ(I)φ(∧i∈IPi). (4.6)

Indeed, by (4.5),

∧i∈Iχ(I)φ(Pi) = ∧i∈I χ(χ
∗(I)⊥ ⊕ χ∗(I)Pi)

=χ(∧i∈I(χ
∗(I)⊥ ⊕ χ∗(I)Pi)) = χ(χ∗(I)⊥ ⊕ χ∗(I)(∧i∈IPi)).

Since ∧i∈IPi ∈ S1,φ we get that χ(χ∗(I)⊥ ⊕ χ∗(I)(∧i∈IPi)) = χ(I)φ(∧i∈IPi)
again using (4.5).

By (1.1), there exist (Qi)i∈I ⊂ S1,φ∗ such that φ∗(Qi)
⊥ = Pi for every

i ∈ I.

We shall prove that

∨i∈Iχ
∗(I)Pi = χ∗(I)(φ∗(∧i∈IQi))

⊥. (4.7)

Since ∆(U∗) = ∆(U)∗ we have that χ∗ = Map(∆(U∗)) and so applying
equation (4.6) to χ∗ we have that

∧i∈Iχ
∗(I)φ∗(Qi) =χ

∗(I)φ∗(∧i∈IQi) ⇒

∨i∈I(χ
∗(I)φ∗(Qi))

⊥ =(χ∗(I)φ∗(∧i∈IQi)
⊥ ⇒

∨i∈I(χ
∗(I)⊥ ⊕ χ∗(I)(φ∗(Qi))

⊥) =χ∗(I)⊥ ⊕ χ∗(I)(φ∗(∧i∈IQi))
⊥ ⇒

∨i∈I(χ
∗(I)⊥ ⊕ χ∗(I)Pi) =χ

∗(I)⊥ ⊕ χ∗(I)(φ∗(∧i∈IQi))
⊥ ⇒

∨i∈Iχ
∗(I)Pi =χ

∗(I)(φ∗(∧i∈IQi))
⊥.

From equalities (4.6) and (4.7) we conclude that the families χ∗(I)S1,φ,

χ(I)S2,φ are complete lattices.
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Since χ(χ∗(I)⊥ ⊕ χ∗(I)Q) = χ(I)φ(Q) for every Q ∈ S1,φ and χ|S1,χ
is

1− 1 the map ϑ is a bijection.
It remains to show that ϑ is sup and inf continuous.

Let (Pi)i∈I ⊂ S1,φ and (Qi)i∈I ⊂ S1,φ∗ be such that φ∗(Qi)
⊥ = Pi, equiv-

alently by equation (1.1) φ(Pi)
⊥ = Qi for every i ∈ I.

Then, since ∧i∈IPi ∈ S1,φ, by the definition of ϑ we have

ϑ(∧i∈Iχ
∗(I)Pi) = ϑ(χ∗(I)(∧i∈IPi)) = χ(I)φ(∧i∈IPi)

= ∧i∈I χ(I)φ(Pi) = ∧i∈Iϑ(χ
∗(I)Pi).

Using equations (4.7) and (1.1) we have that

ϑ(∨i∈Iχ
∗(I)Pi) = ϑ(χ∗(I)(φ∗(∧i∈IQi))

⊥) = χ(I)φ((φ∗(∧i∈IQi))
⊥)

= χ(I)(∧i∈IQi)
⊥ = ∨i∈Iχ(I)Q

⊥
i

= ∨i∈I χ(I)φ(Pi) = ∨i∈Iϑ(χ
∗(I)Pi). �

5 The space U0 is reflexive.

Let U ,U0,∆(U), φ be as in section 3 and χ = Map(∆(U)), ψ = Map(U0).

Lemma 5.1 If ∆(U) is essential, i.e. χ(I) = I, χ∗(I) = I, then S1,ψ ⊂ S1,φ

and S2,ψ ⊂ S2,φ.

Proof

Since χ(I) = I we have φ(I) = I, so by Proposition 4.5, S2,φ is a C.S.L.
Since χ∗(I) = I, S2,φ∗ is a C.S.L. and so S1,φ is a C.S.L.

If E is a projection, then Alg(S2,φ)U0E ⊂ U0E (Lemma 3.5).
It follows that ψ(E)⊥Alg(S2,φ)ψ(E) = 0. Hence ψ(E) ∈ Lat(Alg(S2,φ)).
Since commutative subspace lattices are reflexive [1], it follows that ψ(E) ∈
S2,φ. We get that S2,ψ ⊂ S2,φ.

Analogously U0Alg(S1,φ) ⊂ Alg(S1,φ) so Alg(S⊥
1,φ)U

∗
0 ⊂ U∗

0 . As above we

obtain S2,ψ∗ ⊂ S⊥
1,φ hence S1,ψ ⊂ S1,φ. �

Theorem 5.2 The space U0 is reflexive

Proof
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Firstly, we suppose that ∆(U) is essential (χ(I) = I, χ∗(I) = I).
Now, by Theorem 4.3 we have that S1,χ = P((S1,φ)

′′),S2,χ = P((S2,φ)
′′) and

χ|S1,φ
= φ.

If E ∈ S1,φ, then φ(E), ψ(E) ∈ P((S2,φ)
′′) so there exists a unique F ∈

P((S1,φ)
′′) such that χ(F ) = φ(E)− ψ(E).

We observe that χ(F ) ≤ φ(E) = χ(E). Since χ is a lattice isomorphism
F ≤ E and so ψ(F ) ≤ ψ(E); therefore χ(F )⊥ψ(F ).

Since χ = Map(∆(U)) and ψ = Map(U0) we obtain that
∆(U)F (H1)⊥Ref(U0)F (H1) and so ∆(U)F ∩ Ref(U0)F = 0.
By Theorem 3.1 U = U0 + ∆(U), hence UF = Ref(U0)F ⊕ ∆(U)F and
UF = U0F ⊕∆(U)F.
It follows that U0F = Ref(U0)F and so U0F is reflexive.

Let

P = ∨{F ∈ P((S1,φ)
′′) : χ(F ) = φ(E)− ψ(E), E ∈ S1,φ}.

By the previous arguments the space U0P is reflexive.
Since χ is ∨−continuous we have that

χ(P ) = ∨{φ(E)− ψ(E), E ∈ S1,φ}.

Let Q = χ(P )⊥ then Qφ(E) = Qψ(E) for all E ∈ S1,φ. Therefore, it follows
that

QU = {T : Qφ(E)⊥TE = 0 for all E ∈ S1,φ} =

= {T : Qψ(E)⊥TE = 0 for all E ∈ S1,φ}.

Using the previous lemma (S1,ψ ⊂ S1,φ) we obtain that QU is contained in
the space:

{T : Qψ(E)⊥TE = 0 for all E ∈ S1,ψ} =

= Q = Ref(U0) = Ref(QU0) ⊂ QU .

We proved that QU = Ref(QU0).

Katavolos and Todorov [9] have proved that ∆(U) ⊂ (U)min where (U)min
is the smallest w∗−closed masa bimodule such that Ref((U)min) = U .
So Q∆(U) ⊂ Q(U)min = (QU)min. But since QU0 is a w∗−closed masa
bimodule such that Ref(QU0) = QU it follows that Q∆(U) ⊂ QU0.

Now Q∆(U) = χ(P )⊥∆(U) = ∆(U)P⊥, hence ∆(U)P⊥ ⊂ U0.
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So U = U0 +∆(U)P⊥ +∆(U)P = U0 +∆(U)P and so UP⊥ = U0P
⊥.

We conclude that U0P
⊥ is reflexive. Since U0P is reflexive too, U0 is reflexive.

Now, relax the assumption that ∆(U) is essential.
LetW = χ(I)U|χ∗(I). This is a masa bimodule in B(χ∗(I)(H1), χ(I)(H2)).

We have that

W = {T : χ(I)φ(L)⊥TL|χ∗(I) = 0 for all L ∈ S1,φ}.

By Proposition 4.5 the families S1,φ|χ∗(I),S2,φ|χ(I) are complete lattices and
the map S1,φ|χ∗(I) → S2,φ|χ(I) : P |χ∗(I) → φ(P )|χ(I) is a complete lattice
isomorphism.
By the Lifting theorem of J.Erdos [5] it follows that the (semi)lattices of W
are the families S1,φ|χ∗(I),S2,φ|χ(I).
Therefore, W0 = [χ(I)φ(L)TL⊥|χ∗(I) : T ∈ W, L ∈ S1,φ]

−w∗

= χ(I)U0|χ∗(I).

By the proof in the essential case we have that the spase χ(I)U0χ
∗(I) is

reflexive.
But χ(I)⊥U = χ(I)⊥U0 and Uχ∗(I)⊥ = U0χ

∗(I)⊥ so the spaces χ(I)⊥U0 and
U0χ

∗(I)⊥ are reflexive.
Finally the space U0 is reflexive. �

For the rest of this section let S be a C.S.L. U = Alg(S),J = [PTP⊥ :
T ∈ U , P ∈ S]−‖·‖, Rad(U) be the radical of U , U0 = J −w∗

, ψ = Map(U0). It
is known that J ⊂ Rad(U). The equality J = Rad(U) is an open problem
(Hopenwasser’s conjecture), [8], [3].
I.Todorov [13] has proved that J and Rad(U) have the same reflexive hull.
We improve this by showing the next corollary.

Corollary 5.3 The spaces J and Rad(U) have the same w∗−closure.

Proof

U0 = J −w∗

⊂ Rad(U)−w
∗

⊂ Ref(Rad(U)) = Ref(J ) = U0.

�

Corollary 5.4 Rad(U)−w
∗

= {T : ψ(E)⊥TE = 0 for all E ∈ S}.

Proof
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Rad(U)−w
∗

= U0 = {T : ψ(E)⊥TE = 0 for every projection E} ⊂
{T : ψ(E)⊥TE = 0 for all E ∈ S}.
Using Lemma 5.1 the last space is contained in the space:
{T : ψ(E)⊥TE = 0 for all E ∈ S1,ψ} = U0 = Rad(U)−w

∗

. �

Now we are ready to give the form of the decomposition of U in the case
that U is a C.S.L. algebra:

Proposition 5.5 Let Q = ∨{E − ψ(E) : E ∈ S} then

U = Rad(U)−w
∗

⊕QS ′.

Proof

We observe that Q⊥E = Q⊥ψ(E) for all E ∈ S, so we have:

Q⊥U = {T : Q⊥E⊥TE = 0 for all E ∈ S}

= {T : Q⊥ψ(E)⊥TE = 0 for all E ∈ S}.

By the previous corollary the last space is the space Q⊥Rad(U)−w
∗

.

So we have that Q⊥S ′ ⊂ Q⊥Rad(U)−w
∗

⊂ Rad(U)−w
∗

.

Since U = Rad(U)−w
∗

+ S ′ we have U = Rad(U)−w
∗

+QS ′.

It suffices to show that Rad(U)−w
∗

∩QS ′ = 0.
Let E ∈ S and T ∈ U0 ∩ (E − ψ(E))S ′ then T = (E − ψ(E))T
= ψ(E)⊥ET = ψ(E)⊥TE = 0, because T ∈ U0.

If T ∈ U0 ∩QS ′ ⇒ (E − ψ(E))T ∈ U0 ∩ (E − ψ(E))S ′ = 0.
So (E − ψ(E))T = 0 for all E ∈ S.
But T = (∨{E − ψ(E) : E ∈ S})T. It follows that T = 0 �

6 Decomposition of compact operators in re-

flexive masa bimodules

Let U , U0, ∆(U), φ, D1, D2, Q1 be as in section 3 and χ = Map(∆(U)) .

We denote by K the set of compact operators and by Cp the set of p-
Schatten class operators in B(H1, H2).

Proposition 6.1 If T ∈ R1(U), there exist L ∈ R1(∆(U)) and
S ∈ [R1(U0)]

−‖ ‖1 such that T = L+ S.
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Proof

Write U = {X : φ(Pn)
⊥XPn = 0 for all n ∈ N} for an approriate se-

quence (Pn) ⊂ S1,φ and let T ∈ R1(U).

As in the proof of Theorem 3.1

T = L1 + φ(P1)TP
⊥
1 ,where L1 = φ(P1)TP1 + φ(P1)

⊥TP⊥
1 .

Since φ(P1)
⊥TP1 = 0 and T has rank 1 either φ(P1)

⊥T = 0 or TP1 = 0,
hence either L1 = φ(P1)TP1 or L1 = φ(P1)

⊥TP⊥
1 .

L1 = L2 + φ(P2)L1P
⊥
2 ,where L2 = φ(P2)L1P2 + φ(P2)

⊥L1P
⊥
2 .

Since φ(P2)
⊥L1P2 = 0, either L2 = φ(P2)L1P2 or L2 = φ(P2)

⊥L1P
⊥
2 . Simi-

larly

Ln−1 = Ln + φ(Pn)Ln−1P
⊥
n ,where Ln = φ(Pn)Ln−1Pn + φ(Pn)

⊥Ln−1P
⊥
n .

As before, either Ln = φ(Pn)Ln−1Pn or Ln = φ(Pn)
⊥Ln−1P

⊥
n for all n ∈ N.

We conclude that there exist projections (Qn) ⊂ D2, (Rn) ⊂ D1 such that
Ln = (∧ni=1Qi)T (∧ni=1Ri), n ∈ N.

We observe that T = Ln +Mn where Mn = φ(P1)TP
⊥
1 + φ(P2)L1P

⊥
2 +

...+ φ(Pn)Ln−1P
⊥
n , n ∈ N.

Since ∧ni=1Qi
sot
→ ∧∞

i=1Qi, ∧ni=1Ri
sot
→ ∧∞

i=1Ri and T has rank 1

Ln
‖ ‖1
→ (∧∞

i=1Qi)T (∧
∞
i=1Ri) = L, say.

Now φ(Pi)
⊥LnPi = φ(Pi)LnP

⊥
i = 0, i = 1, 2, ...n for all n ∈ N, therefore

φ(Pi)
⊥LPi = φ(Pi)LP

⊥
i = 0 for all i ∈ N.

Thus L ∈ R1(∆(U)).

We have Mn = T − Ln
‖ ‖1
→ T − L = S ∈ [R1(U0)]

−‖ ‖1 . �

Proposition 6.2 U0 ⊂ (R1(∆(U))∗)0.

Proof

Let T ∈ U , P ∈ S1,φ, R ∈ R1(∆(U)). Then

tr(φ(P )TP⊥R∗) = tr(T (φ(P )RP⊥)∗) = tr(T0) = 0.

Taking the w∗ closed linear span we get tr(SR∗) = 0 for every S ∈
U0. �
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Proposition 6.3 i) R1(∆(U)) ⊂ ∆(U)(I −Q1).
ii) ∆(U) ∩ K = [R1(∆(U))]−‖·‖ ⊂ ∆(U)(I −Q1).

Proof

Let R ∈ R1(∆(U)) then as in Theorem 3.3 RQ1 ∈ ∆(U)Q1 = U0∩∆(U) ⊂
U0.

By the previous proposition we have: tr(RQ1R
∗) = 0 ⇒ tr(R∗RQ1) = 0 ⇒

RQ1 = 0 ⇒ R = R(I −Q1).
We conclude that R1(∆(U)) ⊂ ∆(U)(I −Q1).

For part (ii), observe that if K ∈ ∆(U)∩K then K can be approximated
in the norm topology by sums of rank 1 operators in ∆(U) : Proposition 3.4
in [9]. �

Remark 6.4 We will see below that if U is a strongly reflexive masa bi-
module then [R1(∆(U))]−w

∗

= ∆(U)(I − Q1). This is not true in general.
For example take U to be a TRO which is not strongly reflexive. Then
[R1(∆(U))]−w

∗

is strictly contained in ∆(U)(I −Q1) = U .

Proposition 6.5 ∆(U) ⊂ (R1(U0)
∗)0.

Proof

Let T ∈ R1(U0). Then as in Proposition 6.1 we have T = L+M where

L ∈ R1(∆(U)) andM ∈ [R1(φ(Pn)UP
⊥
n ) : n ∈ N]−‖ ‖1 ⊂ U0.

So L = T −M ∈ U0 ∩ R1(∆(U)).

Using Proposition 6.3, U0∩R1(∆(U)) ⊂ U0∩∆(U)(I−Q1) which vanishes
by Theorem 3.3 so L = 0 and hence T =M.

We conclude that

R1(U0) ⊂ [R1(φ(Pn)UP
⊥
n ) : n ∈ N]−‖ ‖1 . (6.1)

Let A ∈ ∆(U). We want to show that tr(A∗R) = 0 for every R ∈ R1(U0).

Using (6.1) it suffices to show that tr(A∗R) = 0 for every R ∈ R1(φ(Pn)UP
⊥
n ),

and n ∈ N.
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Let R a rank 1 operator such that R = φ(Pn)RP
⊥
n then

tr(A∗R) =tr(A∗φ(Pn)RP
⊥
n ) = tr(P⊥

n A
∗φ(Pn)R)

=tr((φ(Pn)AP
⊥
n )

∗R) = tr(0R) = 0. �

Let P ∈ S1,φ. We suppose that ∨{φ(L) : L ∈ S1,φ, φ(L) < φ(P )} < φ(P ).
Since S2,φ is join complete there exists P0 ∈ S1,φ such that

φ(P0) = ∨{φ(L) : L ∈ S1,φ, φ(L) < φ(P )}.

We call the projection P−P0 an atom of U and we denote the projection
φ(P )− φ(P0) by δ(P − P0).

Proposition 6.6 Let F be an atom of U .
i)The projection F is minimal in the algebra (S1,φ)

′′.

ii)The projection χ(I)δ(F ) is minimal in the algebra χ(I)(S2,φ)
′′.

iii)χ(I)δ(F )B(H1, H2)F ⊂ ∆(U).
iv)χ(I)⊥δ(F )B(H1, H2)F ⊂ U0.

Proof

i) Let P, P0 ∈ S1,φ be such that φ(P0) = ∨{φ(L) : L ∈ S1,φ, φ(L) <
φ(P )} < φ(P ) and F = P − P0.

If Q ∈ S1,φ either P ≤ Q or QP < P.

If P ≤ Q then QF = F.

If QP < P then (since QP ∈ S1,φ and φ is 1-1 on S1,φ) φ(QP ) < φ(P ) ⇒
φ(QP ) ≤ φ(P0) ⇒ QP ≤ P0, so QF = 0.

We conclude that QFB(H1)F = FB(H1)QF for all Q ∈ S1,φ, therefore
FB(H1)F ⊂ (S1,φ)

′, hence F is a minimal projection in (S1,φ)
′′.

ii)Since P, P0 ∈ S1,φ we have that φ(P )∆(U) = ∆(U)P and φ(P0)∆(U) =
∆(U)P0 hence

δ(F )∆(U) = ∆(U)F and so χ(I)δ(F ) = χ(F ).

Let Q ∈ S1,φ.

If QF = 0 then χ(I)δ(F )φ(Q) = 0. (6.2)
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Indeed, δ(F )∆(U) = ∆(U)F so δ(F )∆(U)Q = 0 so δ(F )χ(Q) = 0 so
χ(I)δ(F )φ(Q) = 0.

If QF = F ⇒ χ(I)δ(F )φ(Q) = χ(I)δ(F ). (6.3)

Indeed, δ(F )∆(U) = ∆(U)F so δ(F )∆(U)Q = ∆(U)F so δ(F )χ(Q) =
χ(F ) so χ(I)δ(F )φ(Q) = χ(I)δ(F ).

Using equations (6.2), (6.3) as in (i) we have that χ(I)δ(F ) is a minimal
projection in χ(I)(S2,φ)

′′.

iii)Let T ∈ B(H1, H2) and Q ∈ S1,φ.

From equations (6.2), (6.3) it follows that φ(Q)χ(I)δ(F )TF = χ(I)δ(F )TFQ,
so χ(I)δ(F )TF ∈ ∆(U).

iv)If T ∈ U then χ(I)⊥T ∈ U0. Indeed, by Theorem 3.1 there exist
T1 ∈ U0, T2 ∈ ∆(U) so that T = T1 + T2.

But T2 = χ(I)T2 so χ(I)⊥T = χ(I)⊥T1 ∈ U0.

Now it suffices to show that δ(F )B(H1, H2)F ⊂ U .
Let T ∈ B(H1, H2) and Q ∈ S1,φ.

If FQ = 0 then φ(Q)⊥δ(F )TFQ = 0.
If FQ = F then P−P0 ≤ Q hence δ(F ) = φ(P )−φ(P0) ≤ φ(P −P0) ≤ φ(Q)
so φ(Q)⊥δ(F )TFQ = 0.
We conclude that δ(F )TF ∈ U . �

Remark 6.7 There exists a simple example of a reflexive masa bimodule U
so that δ(F )B(H1, H2)F ⊂ U0 for any atom F in U .
(Take U to be the set of 3× 3 matrixes with zero diagonal.)
This is an example of the different behaviour of algebras and bimodules:
it is known that if U is a CSL algebra in a Hilbert space H and F is an atom
in U then FB(H)F ⊂ ∆(U).

We thank Dr. I.Todorov for suggesting the ‘atomic decomposition’ in the
theorem below.

Theorem 6.8 Let {Fn : n ∈ N} = {F : F atom of U}. Then

[R1(∆(U))]−w
∗

=
∞∑

n=1

⊕χ(I)δ(Fn)B(H1, H2)Fn.
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Proof

By the previous proposition it follows that

[R1(∆(U))]−w
∗

⊃
∞∑

n=1

⊕χ(I)δ(Fn)B(H1, H2)Fn.

Let R = x⊗ y∗ ∈ ∆(U).
For every Q ∈ S1,φ we have that x⊗ (Qy)∗ = (φ(Q)x)⊗ y∗ so
φ(Q)x 6= 0 ⇔ Qy 6= 0 ⇔ φ(Q)x = x⇔ Qy = y.

Let P = ∧{Q ∈ S1,φ : Qy = y}, then P ∈ S1,φ.

If Q ∈ S1,φ so that φ(Q) < φ(P ) then φ(Q)x = 0.
(If φ(Q)x = x then Qy = y so Q ≥ P ).

Let P0 ∈ S1,φ with φ(P0) = ∨{φ(L) : L ∈ S1,φ, φ(L) < φ(P )}.
We observe that φ(P0)x = 0 and φ(P )x = x, hence φ(P0) < φ(P ).
We conclude that F = P − P0 is an atom of U .
The equalities (P − P0)y = y and (φ(P )− φ(P0))x = x imply that
R = δ(F )RF. But R = χ(I)R so R = χ(I)δ(F )RF.
The proof is complete. �

Every strongly reflexive TRO is a masa bimodule [9].
So using the previous theorem we have a new proof of the following result in
[9].

Corollary 6.9 If M is a strongly reflexive TRO, ζ = Map(M) and
{An : n ∈ N} = {A : A atom of M}, then

M =

∞∑

n=1

⊕ζ(An)B(H1, H2)An.

Let (Pn) ⊂ S1,φ be a sequence such that

U = {T ∈ B(H1, H2) : φ(Pn)
⊥TPn = 0 for all n ∈ N}.

Let Vn, Un : B(H1, H2) −→ B(H1, H2), n ∈ N be as in theorem 3.1.
By Theorem 6.8

[R1(∆(U))]−w
∗

=
∞∑

n=1

⊕EnB(H1, H2)Fn,
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where Fn atom of U and En = χ(I)δ(Fn) for all n ∈ N.

Thus [R1(∆(U))]−w
∗

is the range of the contractive projection D defined
by

D : B(H1, H2) −→ B(H1, H2) : D(T ) =
∞∑

n=1

EnTFn.

Proposition 6.10 Let K ∈ K, then the sequence (Un(K)) converges to
D(K) in norm.

Proof

We observe that (Vn|C2
) is a commuting sequence of orthogonal projec-

tions in the Hilbert space C2.

Hence (Un|C2
) is a decreasing sequence of orthogonal projections. There-

fore if T ∈ C2 the sequence (Un(T )) converges in the Hilbert-Schmidt norm
‖ · ‖2.

Let K ∈ K. Then for ε > 0 there exist Kε ∈ C2 such that ‖K −Kε‖ <
ε
3

and n0 ∈ N such that ‖Un(Kε)− Um(Kε)‖2 <
ε
3
for every n,m ≥ n0.

Then

‖Un(K)− Um(K)‖

≤ ‖Un(K)− Un(Kε)‖+ ‖Un(Kε)− Um(Kε)‖+ ‖Um(Kε)− Um(K)‖

≤ ‖K −Kε‖+ ‖Un(Kε)− Um(Kε)‖2 + ‖K −Kε‖ < ε

for every n,m ≥ n0.

Thus (Un(K)) converges in norm. Let D1(K) = ‖ · ‖ − limUn(K).

Since φ(Pi)
⊥Un(K)Pi = φ(Pi)Un(K)P⊥

i = 0 for every i = 1, 2, ...n, the
limit D1(K) belongs to the diagonal ∆(U).

Since ‖Un(K)‖ ≤ ‖K‖ for all n ∈ N, D1 is a contraction.

We observe that if K ∈ ∆(U) ∩ K then Un(K) = K for all n ∈ N hence
D1 projects onto ∆(U) ∩ K.

NowD1|C2
is the orthogonal projection onto ∆(U)∩C2, being the infimum

of the sequence (Un|C2
).

We can also observe that D|C2
is an orthogonal projection in the Hilbert

space C2.
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If T ∈ ∆(U) ∩ C2 then by Proposition 6.3 T =
∑∞

n=1EnTFn = D(T ).

We conclude that D|C2
and D1|C2

are both orthogonal projections onto
∆(U) ∩ C2, hence D|C2

= D1|C2
.

Since C2 is norm dense in K and D|K, D1 are norm continuous, D|K =
D1. �

Proposition 6.11 Suppose that ∨nFn = F. Then the sequence (Un(T )F )
converges strongly to the operator D(T ) for every T ∈ B(H1, H2).

Proof

First we observe that if x ∈ Fm(H1), m ∈ N, then the operator x ⊗ x∗ is
in (S1,φ)

′.

Indeed, let y ∈ Em(H2), then R = y ⊗ x∗ ∈ ∆(U).
It follows that R∗R = ‖y‖2x⊗ x∗ ∈ ∆(U)∗∆(U) ⊂ (S1,φ)

′.

Let T ∈ B(H1, H2) and x ∈ Fm(H1), m ∈ N, ‖x‖ = 1.

By Proposition 6.10

Ui(Tx⊗ x∗)
‖·‖
→ D(Tx⊗ x∗), i→ ∞,

hence

Ui(Tx⊗ x∗)(x)
‖·‖
→ D(Tx⊗ x∗)(x), i→ ∞ (6.4)

D(Tx⊗ x∗)(x) =

∞∑

n=1

En(Tx⊗ x∗)Fn(x) = EmT (x) (6.5)

D(T )(x) =
∞∑

n=1

EnTFn(x) = EmT (x) (6.6)

We have that

Vi(Tx⊗ x∗) = φ(Pi) (T x⊗ x∗) Pi + φ(Pi)
⊥(T x⊗ x∗) P⊥

i , i ∈ N

since x⊗ x∗ ∈ (S1,φ)
′,

Vi(Tx⊗ x∗) = (φ(Pi) T Pi) (x⊗ x∗) + (φ(Pi)
⊥T P⊥

i ) (x⊗ x∗), i ∈ N,

hence

Ui(Tx⊗ x∗) = Ui(T )x⊗ x∗ ⇒ Ui(Tx⊗ x∗)(x) = Ui(T )(x), i ∈ N (6.7)
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Using (6.4), (6.5), (6.6), (6.7)

Ui(T )(x)
‖·‖
→ D(T )(x), i→ ∞ for all x ∈ [

∞⋃

m=1

Fm(H1)].

Since the Ui are contractions Ui(T )(x)
‖·‖
→ D(T )(x), for all x ∈ F (H1)

Observe that D(T )F = D(T ). �

Remark 6.12 The sequence (Un(T )) has similar properties to the net of
finite diagonal sums in the case of nest algebras.(Propositions 6.10,6.11 are
analogous to Propositions 4.3,4.4 in [2].)

Theorem 6.13 Let K ∈ U be compact. Then there exist unique compact
operators K1 ∈ U0, K2 ∈ ∆(U) such that K = K1 + K2. Moreover K2 =
D(K).

Proof

Let K2 = D(K) and K1 = K −K2 then K1 = lim(K − Un(K)) (Propo-
sition 6.10).

As in Theorem 3.1 K − Un(K) ∈ U0 for all n ∈ N. Hence K1 ∈ U0.

The decomposition K = K1 + K2 in U0 + ∆(U) ∩ K is unique because
by Proposition 6.3, ∆(U) ∩ K ⊂ ∆(U)(I − Q1), while by Theorem 3.3, U =
U0 ⊕∆(U)(I −Q1). �

Corollary 6.14 Let F ∈ U be a finite rank operator. Then there exist unique
finite rank operators F1 ∈ U0, F2 ∈ ∆(U) such that F = F1 + F2. Moreover
rankF2 ≤ rankF and F2 = D(F ).

Proof

It can be shown that for each n ∈ N we have rank(Un(F )) ≤ rank(F ).

Therefore if F2 = ‖ · ‖-limUn(F ) then rank(F2) ≤ rank(F ) and F2 =
D(F ).

Setting F1 = F − F2 we obtain the desired decomposition. �

Corollary 6.15 Let K ∈ U ∩ Cp, 1 ≤ p < ∞. Then there exist unique
operators K1 ∈ U0 ∩ Cp, K2 ∈ ∆(U) ∩ Cp such that K = K1 +K2. Moreover
‖K2‖p ≤ ‖K‖p.
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Proof

As in Theorem 6.13 K = K1 +D(K) where K1 ∈ U0.

We observe that D(K) ∈ Cp and ‖D(K)‖p ≤ ‖K‖p. �

7 Decomposition of a strongly reflexive masa

bimodule

Let U , U0, ∆(U), φ, D1, D2 be as in section 3 and χ = Map(∆(U)).

We now assume that U is a strongly reflexive masa bimodule.

Proposition 7.1 The space U0 is strongly reflexive.

Proof

Let T ∈ U , P ∈ S1,φ. Since U is a strongly reflexive masa bimodule there

exists a net (Ri) ⊂ [R1(U)] such that Ri
wot
→ T : Corollary 2.5 in [6].

So we have that φ(P )RiP
⊥ wot
→ φ(P )TP⊥. Since (φ(P )RiP

⊥) ⊂ [R1(U0)] we
conclude that φ(P )TP⊥ ∈ [R1(U0)]

−wot.

We proved that φ(P )UP⊥ ⊂ [R1(U0)]
−wot for all P ∈ S1,φ. Hence U0 =

[R1(U0)]
−wot. �

Remark 7.2 The diagonal of a strongly reflexive masa bimodule is not necec-
carily strongly reflexive. For example if U is a nonatomic nest algebra, then
∆(U) does not contain rank 1 operators.

Proposition 7.3 i) U0 = U ∩ (R1(∆(U))∗)0.
ii) U0 ∩∆(U) = ∆(U) ∩ (R1(∆(U))∗)0.

Proof

By Proposition 6.2 we have U0 ⊂ (R1(∆(U))∗)0.
It suffices to show that U ∩ (R1(∆(U))∗)0 ⊂ U0.

Since U ∩ (R1(∆(U))∗)0 is masa bimodule, as in Theorem 3.1 we can
decompose it in the next sum:

U ∩ (R1(∆(U))∗)0 = U0 ∩ (R1(∆(U))∗)0 +∆(U) ∩ (R1(∆(U))∗)0.

Now we must prove that ∆(U) ∩ (R1(∆(U))∗)0 ⊂ U0.
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Using Theorem 2.2, there exist projections P1 ∈ D1, P2 ∈ D2 such that
[R1(∆(U))]−w

∗

= P2∆(U)P1 and ∆(U) ∩ (R1(∆(U))∗)0 = P⊥
2 ∆(U)P⊥

1 .

Let T ∈ ∆(U) ∩ (R1(∆(U))∗)0.
Since U is a strongly reflexive masa bimodule there exists a net (Ri) ⊂

[R1(U)] such that Ri
wot
→ T [6].

By Proposition 6.1 there exist Mi ∈ [R1(∆(U))], Li ∈ U0 such that Ri =
Mi + Li.

ThusMi+Li
wot
→ T so P⊥

2 MiP
⊥
1 +P⊥

2 LiP
⊥
1

wot
→ P⊥

2 TP
⊥
1 and thus P⊥

2 LiP
⊥
1

wot
→

T. It follows that T ∈ U0. �

Theorem 7.4 U = U0 ⊕ [R1(∆(U))]−w
∗

.

Proof

By Theorem 2.2,

∆(U) = ∆(U) ∩ (R1(∆(U)∗)0 ⊕ [R1(∆(U))]−w
∗

so by Proposition 7.3 ∆(U) = U0 ∩∆(U) + [R1(∆(U))]−w
∗

.

Since U = U0 +∆(U) we have that U = U0 + [R1(∆(U))]−w
∗

.

By Proposition 6.3 and Theorem 3.3 the previous sum is direct. �

Propositions 3.6 and 3.7 have the following consequences:

Corollary 7.5 i)The following are equivalent:
a) R1(∆(U)) = 0.
b) ∆(U)∗∆(U) ⊂ L1 ∩ A1.

c) ∆(U)∆(U)∗ ⊂ L2 ∩ A2.

ii)The following are equivalent:
a)∆(U) is strongly reflexive.
b) ∆(U) (L1 ∩ A1) = 0.
c) (L2 ∩A2) ∆(U) = 0.

Theorems 6.8, 7.4 and Corollary 5.3 give the following form of the de-
composition of U when it is a strongly reflexive C.S.L. algebra.

Corollary 7.6 If S is a completely distributive CSL in a Hilbert space H
and {An : n ∈ N} = {A : A atom of S} then:

Alg(S) = Rad(Alg(S))−w
∗

⊕
∞∑

n=1

⊕AnB(H)An.
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Recall the notation [R1(∆(U))]−w
∗

=
∑∞

n=1⊕χ(I)δ(Fn)B(H1, H2)Fn,
where {Fn : n ∈ N} = {F : F atom of U} and

D : B(H1, H2) −→ B(H1, H2) : D(T ) =
∞∑

n=1

χ(I)δ(Fn)TFn.

Proposition 7.7 Let θ : U → U be the projection onto [R1(∆(U))]−w
∗

de-
fined by the decomposition in Theorem 7.4. Then θ = D|U .

Proof

Since U decomposes as the direct sum of the masa bimodules U0 and
[R1(∆(U))]−w

∗

, the map θ is a masa bimodule map:

θ(D2TD1) = D2θ(T )D1

for every T ∈ U , D1 ∈ D1, D2 ∈ D2.

Hence if T ∈ U :

θ(T ) =
∞∑

n=1

χ(I)δ(Fn)θ(T )Fn =
∞∑

n=1

θ(χ(I)δ(Fn)TFn)

=
∞∑

n=1

χ(I)δ(Fn)TFn = D(T ). �

Proposition 7.8 U0 = {T ∈ U : χ(I)δ(F )TF = 0 for every atom F of U}.

Proof

Let F be an atom of U .
If P ∈ S1,φ, as in Proposition 6.6 either PF = F ⇒ P⊥F = 0 or PF = 0 ⇒
χ(I)δ(F )φ(P ) = 0.
So χ(I)δ(F )φ(P )TP⊥F = 0 for all P ∈ S1,φ and T ∈ U , thus χ(I)δ(F )U0F =
0 for every atom F.

It follows that U0 ⊂ {T ∈ U : χ(I)δ(F )TF = 0, for every atom F in U}.

For the converse, let T ∈ U : χ(I)δ(F )TF = 0 for every atom F in U .
By the previous proposition D(T ) = 0, hence T ∈ U0. �

It is known that the linear span of the rank 1 operators in a strongly
reflexive masa bimodule is wot dense in the module.
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This is not true generally for the ultraweak topology [6].
For the previous problem we have the next equivalence in proposition

7.10.
Firstly, we need the following lemma.

Lemma 7.9 If U is a reflexive masa bimodule (not necessarily strongly re-
flexive) then:

[R1(U)]
−w∗

= [R1(U0)]
−w∗

⊕ [R1(∆(U))]−w
∗

.

Proof

Since R1(∆(U)) ⊂ ∆(U)(I − Q1) (Proposition 6.3), by Theorem 3.3 the
previous sum is direct.

Clearly
[R1(U)]

−w∗

⊃ [R1(U0)]
−w∗

⊕ [R1(∆(U))]−w
∗

.

For the converse, let T ∈ [R1(U)]
−w∗

.

There is a net (Ri) ⊂ [R1(U)] with Ri
w∗

−→ T.

As in Proposition 6.1, we may decompose Ri = Li +Mi where
Li ∈ [R1(U0)]

−‖·‖1 and Mi ∈ [R1(∆(U))] for all i.

Since Mi = D(Ri) (Corollary 6.14) and D is w∗−continuous,

we have Mi
w∗

−→ M ∈ [R1(∆(U))]−w
∗

.

So Li = Ri −Mi
w∗

−→ T −M = L ∈ [R1(U0)]
−w∗

.

Thus T = L+M ∈ [R1(U0)]
−w∗

⊕ [R1(∆(U))]−w
∗

. �

Proposition 7.10 If U is a strongly reflexive masa bimodule, then:

U = [R1(U)]
−w∗

⇔ U0 = [R1(U0)]
−w∗

.

Proof

Suppose U = [R1(U)]
−w∗

. Then by Theorem 7.4 we have
U = U0 ⊕ [R1(∆(U))]−w

∗

.

It follows from the previous lemma that U0 = [R1(U0)]
−w∗

.

If conversely U0 = [R1(U0)]
−w∗

then again by Theorem 7.4

U = U0 ⊕ [R1(∆(U))]−w
∗

= [R1(U0)]
−w∗

⊕ [R1(∆(U))]−w
∗

= [R1(U)]
−w∗
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by Lemma 7.9. �
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