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Abstract

Extending the gauge-invariance principle for τ functions of the standard bi-

linear formalism to the supersymmetric case, we define N = 1 supersymmet-

ric Hirota operators. Using them, we bilinearize SUSY nonlinear evolution

equations. The super-soliton solutions and extension to SUSY sine-Gordon

are also discussed. As a quite strange paradox it is shown that the Lax in-

tegrable SUSY KdV of Manin-Radul-Mathieu equation does not possess N

super-soliton solution for N ≥ 3 for arbitrary parameters. Only for a partic-

ular choice of them the N super-soliton solution exists.

I. INTRODUCTION

Supersymmetric integrable systems constitute a very interesting subject and as a conse-

quence a number of well known integrable equations have been generalized into supersym-

metric (SUSY) context. We mention the SUSY versions of sine-Gordon [1], [2], KP-hierarchy

[3], KdV [3], [4], Boussinesq [6] etc. We also point out that there are many generalizations

related to the number N of fermionic independent variables. In this paper we are dealing

with the N = 1 superspace.
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So far, many of the tools used in standard theory have been extended to this frame-

work, such as Bäcklund transformations [2], prolongation theory, hamiltonian formalism [7],

grasmmannian description [8], τ functions [9], Darboux transformations [10]. The phys-

ical interest in the study of these systems have been launched by the seminal paper of

Alvarez-Gaume et. al [11] about the partition function and super-Virasoro constraints of 2D

quantum supergravity. Although the τ function theory in the context of SUSY pseudodiffer-

ential operators was given for the SUSY KP-hierarchy [8], the bilinear formalism for SUSY

equations was very little investigated. We mention here the algebraic approach using the

representation theory of affine Lie super-algebras in the papers of Kac and van der Leur [12],

Kac and Medina [13] the super-conformal field theoretic approach of LeClair [14]. Anyway

in these articles the bilinear hierarchies are not related to the SUSY hierarchies of nonlinear

equations.

This paper which is an extended version of [16] we consider a direct approach to SUSY

equations in a N = 1 superspace rather than hierarchies namely extending the gauge-

invariance principle of τ functions for classical Hirota operators. Our result generalize the

Grammaticos-Ramani-Hietarinta [17] theorem, to SUSY case and we find N = 1 SUSY Hi-

rota bilinear operators. With these operators one can obtain SUSY-bilinear forms for SUSY

KdV equation of Mathieu [4] and also it allows bilinear forms for certain SUSY extensions of

Sawada-Kotera-Ramani [18], Hirota-Satsuma [19], KdV-B [5], Burgers, mKdV and N = 2

-superspace SUSY sine-Gordon equations [25]. Also the gauge-invariance principle allows

to study the SUSY multisoliton solutions as exponentials of linears. A very interesting fact

which happens is that SUSY KdV equation of Mathieu does not have 3 supersoliton solution

for arbitrary choice of solitary waves although it possesses Lax pair [4]. Only for special

combination of parameters the equation admits N soliton solutions. Although this seems to

be a quite strange paradox, Liu and Manas [10], found also super-soliton solutions for SUSY

KdV equation in terms of pfaffians only for certain wave parameters. This fact shows that

Hirota integrability and Lax integrability are different in the SUSY context.

The paper is organized as follows. In section II the standard bilinear formalism is briefly
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discussed. In section III supersymmetric versions for nonlinear evolution equations are

presented and in section IV we introduce the super-bilinear formalism. In the last section

we shall present the bilinear form for SUSY KdV-type equations, super-soliton solutions and

several comments about extension to N = 2 SUSY sine-Gordon equation.

II. STANDARD BILINEAR FORMALISM

The Hirota bilinear operators were introduced as an antisymmetric extension of the usual

derivative [21], because of their usefulness for the computation of multisoliton solution of

nonlinear evolution equations. The bilinear operator Dx = ∂x1 − ∂x2 , acts on a pair of

functions (the so-called ”dot product”) antisymmetrically:

Dxf • g = (∂x1 − ∂x2)f(x1)f(x2)|x1=x2=x = f ′g − fg′. (2.1)

The Hirota bilinear formalism has been instrumental in the derivation of the multisoliton

solutions of (integrable) nonlinear evolution equations. The first step in the application is a

dependent variable transformation which converts the nonlinear equation into a quadratic

form. This quadratic form turns out to have the same structure as the dispersion relation

of the linearized nonlinear equation, although there is no deep reason for that. This is best

understood if we consider an example. Starting from paradigmatic KdV equation

ut + 6uux + uxxx = 0, (2.2)

we introduce the substitution u = 2∂2x logF and obtain after one integration:

FxtF − FxFt + FxxxxF − 4FxxxFx + 3F 2
xx = 0, (2.3)

which can be written in the following condensed form:

(DxDt +D
4
x)F • F = 0. (2.4)

The power of the bilinear formalism lies in the fact that for multisoliton solution F ’s are

polynomials of exponentials. Moreover it displays also the interaction (phase-shifts) between

solitons. In the case of KdV equation the multisoliton solution has the following form:
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F =
∑

µ=0,1

exp (
N
∑

i=1

µiηi +
∑

i<j

Aijµiµj), (2.5)

where ηi = kix−k3i t+η
(0)
i and expAij = (

ki−kj
ki+kj

)2 which is the phase-shift from the interaction

of the soliton ”i” with the soliton ”j”.

This picture can be generalized to any bilinear equation of the form

P (D~x)F • F = 0 (2.6)

where P is any polynomial and ~x = (t, x, y, ...). The 1 soliton solution is F = 1 + eη, where

η = ~k~x+ const. This solution holds if

P (~k) = 0.

This is a condition on the parameters ~k of η and is called the dispersion relation. If the

parameter space is n-dimensional then the above equation defines an n − 1 dimensional

submanifold called dispersion manifold.

Hirota ansatz for 2 soliton solution is

F = 1 + eη1 + eη2 + A12e
η1+η2

where η’s are defined before and A12 are function of ~k1 and ~k2 each one giving the coordinates

of some point in the dispersion manifold. Substituting the ansatz in the equation (2.6) and

taking into account the dispersion relation we find

A12P (~k1 + ~k2) + P (~k1 − ~k2) = 0. (2.7)

Generally speaking, the great majority of bilinear equations possess 2 soliton solution but

only integrable equations possess 3 or more soliton solutions. The form of the N soliton

solution is,

F =
∑

µ=0,1

exp (
N
∑

i=1

µiηi +
∑

i<j

Aijµiµj)

More about the bilinear equations are in [22]
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A very important observation (which motivated the present paper) is the relation of

the physical field u = 2∂2x logF of KdV equation with the Hirota function F : the gauge-

transformation F → epx+ωtF leaves u invariant. This is a general property of all bilinear

equations. Moreover, one can define the Hirota operators using the requirement of gauge-

invariance. Let’s introduce a general bilinear expression,

AN (f, g) =
N
∑

i=0

ci(∂
N−i
x f)(∂ixg) (2.8)

and ask to be invariant under the gauge-trasformation:

AN(e
θf, eθg) = e2θAN(f, g) θ = kx+ ωt+ ...(linears). (2.9)

Then we have the following, [17]

Theorem: AN(f, g) is gauge-invariant if and only if AN(f, g) = D
N
x f • g i.e.

ci = c0(−1)i









N

i









and c0 is a constant and the brakets represent binomial coefficient.

We must point out that in the whole paper the natural number N (which will denote

number of solitons, number of terms, exponents etc.) is different from N which is related

to supersymmetry or superspace.

III. SUPERSYMMETRY

The supersymmetric extension of a nonlinear evolution equation (KdV for instance) refers

to a system of coupled equations for a bosonic u(t, x) and a fermionic field ξ(t, x) which

reduces to the initial equation in the limit where the fermionic field is zero (bosonic limit).

In the classical context, a fermionic field is described by an anticommuting function with

values in an infinitely generated Grassmann algebra. However, supersymmetry is not just a

coupling of a bosonic field to a fermionic field. It implies a transformation (supersymmetry

invariance) relating these two fields which leaves the system invariant. In order to have a
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mathematical formulation of these concepts we have to extend the classical space (x, t) to

a larger space (superspace) (t, x, θ) where θ is a Grassmann variable and also to extend the

pair of fields (u, ξ) to a larger fermionic or bosonic superfield Φ(t, x, θ). In order to have

nontrivial extension for KdV we choose Φ to be fermionic, having the expansion

Φ(t, x, θ) = ξ(t, x) + θu(t, x). (3.1)

The N = 1 SUSY means that we have only one Grassmann variable θ and we consider

only space supersymmetry invariance namely x → x − λθ and θ → θ + λ (λ is an anti-

commuting parameter). This transformation is generated by the operator Q = ∂θ − θ∂x,

which anticommutes with the covariant derivative D = ∂θ + θ∂x (Notice also that D2 = ∂x).

Expressions written in terms of the covariant derivative and the superfield Φ are manifestly

supersymmetric invariant. Using the superspace formalism one can construct different su-

persymmetric extension of nonlinear equations. Thus the integrable (in the sense of Lax

pair) variant of N = 1 SUSY KdV is [3] [4]

Φt +D6Φ + 3D2(ΦDΦ) = 0, (3.2)

which on the components has the form

ut = −uxxx − 6uux + 3ξξxx

ξt = −ξxxx − 3ξxu− 3ξux. (3.3)

Another integrable variant of SUSY KdV equation which is very important in applications

to supersymmetric matrix models is SUSY KdV-B equation [5], namely

Φt +D6Φ + 6D2ΦDΦ = 0, (3.4)

leads to a somewhat trivial system in which the fermionic fields decouple from the bosonic

equation which reduces then to the usual KdV.

We shall discuss also the following supersymmetric equations, although we do not know

if it is completely integrable in the sense of Lax pair (Φ is also a fermionic superfield).
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• N = 1 SUSY Sawada-Kotera-Ramani,

Φt +D10Φ +D2(10DΦD4Φ + 5D5ΦΦ + 15(DΦ)2Φ) = 0. (3.5)

• N = 1 SUSY Hirota-Satsuma (shallow water wave)

D4Φt + ΦtD
3Φ+ 2D2ΦDΦt −D2Φ− Φt = 0 (3.6)

• N = 1 SUSY Burgers

Φt + ΦDΦx + Φxx = 0 (3.7)

A very important equation from the physical consideration is the SUSY sine-Gordon.

We are going to consider the version studied by Kulish and Tsyplyaev [25]. There are other

integrable versions of SUSY sine-Gordon emerged from algebraic procedures [24]. In this case

one needs two Grassmann variables θα with α = 1, 2 and the supersymmetry transformation

is

x
′µ = xµ − iλ̄γµθ, θ

′

α = θα + λα, µ = 1, 2.

Here, λα is the anticommuting spinor parameter of the transformation and λ̄ = (λ1, λ2),

λα = λβ(iσ2)
βα, γ0 = iσ2, γ

1 = σ1, γ
5 = γ0γ1 = σ3. We use the metric gµν = diag(−1, 1)

and σi are the Pauli matrices. The superfield has the following expansion:

Φ(xµ, θα) = φ(xµ) + iθ̄ψ(xµ) +
i

2
θ̄θF (xµ), (3.8)

where φ and F are real bosonic (even) scalar fields and ψα is a Majorana spinor field. The

SUSY sine-Gordon equation is:

D̄DΦ = 2i sinΦ, (3.9)

where Dα = ∂θα + i(γµθ)α∂µ and on the components it has the form:

(γµ∂µ + cosφ)ψ = 0

φxx − φtt =
1

2
(sin (2φ)− iψ̄ψ sinφ). (3.10)
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IV. SUPER-HIROTA OPERATORS

In order to apply the bilinear formalism on these equations one has to define a SUSY

bilinear operator. We are going to consider the following general N = 1 SUSY bilinear

expression

SN(f, g) =
N
∑

i=0

ci(D
N−if)(Dig), (4.1)

for any N, where D is the covariant derivative and f , g are Grassmann valued functions

(odd or even). We shall prove the following

Theorem: The general N = 1 SUSY bilinear expression (4.1) is super-gauge invariant

i.e. for Θ = kx+ ωt+ θζ̂+...linears (ζ is a Grassmann parameter)

SN(e
Θf, eΘg) = e2ΘSN(f, g),

if and only if

ci = c0(−1)i|f |+
i(i+1)

2









N

i









,

where the super-binomial coefficients are defined by:









N

i









=







































[N/2]

[i/2]









if (N, i) 6= (0, 1)mod2

0 otherwise

|f | is the Grassmann parity of the function f defined by:

|f | =















1 if f is odd (fermionic)

0 if f is even (bosonic)

and [k] is the integer part of the real number k ([k] ≤ k < [k] + 1)

Proof: First we are going to consider N even and we shall take it on the form N = 2P .

In this case we have:

SN(f, g) =
N
∑

i=1

ci(D
N−if)(Dig) =

P
∑

i=0

c2i(∂
P−if)(∂ig) +

P−1
∑

j=0

c2j+1(∂
P−j−1Df)(∂jDg)
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Imposing the super-gauge invariance and expanding the covariant derivatives we obtain:

∑

n≥0

∑

m≥0









P
∑

i=0

c2i









i

n

















P − i

m









kP−n−m









(∂mf)(∂ng)+

+
∑

n′≥0

∑

m′≥0

Λ









P−1
∑

j=0

c2j+1









j

n′

















P − j − 1

m′









kP−n′−m′−1









(∂m
′

f)(∂n
′

Dg)+

+
∑

n′≥0

∑

m′≥0

Λ(−1)|f |+1









P−1
∑

j=0

c2j+1









j

n′

















P − j − 1

m′









kP−n′−m′−1









(∂m
′

Df)(∂n
′

g)+

+
∑

n≥0

∑

m≥0









P−1
∑

j=0

c2j+1









j

n

















P − j − 1

m









kP−n−m−1









(∂mDf)(∂nDg) =

=
P
∑

i=0

c2i(∂
P−if)(∂ig) +

P−1
∑

j=0

c2j−1(∂
P−j−1Df)(∂jDg)

where Λ = ζ̂ + θk. From this, we must have for every m, n subjected to 0 ≤ n ≤ i ≤ P −m

and j ≤ P −m′.

P
∑

i=0

c2i









i

n

















P − i

m









kP−n−m = c2nδP−n−m (4.2)

Also due to the fact that the supergauge invariance has to be obeyed for every f and g we

must have c2j+1 = 0 The discrete equation (4.2) was solved in [17]. Its general solution is

given by:

c2i = c0(−1)i









P

i









c2j+1 = 0 (4.3)

In the case of N = 2P + 1 we proceed in a similar manner and we obtain the following

system:

P
∑

i=0

c2i









i

n

















P − i

m









kP−n−m = c2nδP−n−m (4.4)
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P
∑

j=0

c2j+1









j

n

















P − j − 1

m









kP−n−m−1 = c2n+1δP−n−m−1 (4.5)

(−1)|f |c2i + c2i+1 = 0 (4.6)

This system has the following solution:

c2i = c0(−1)i









P

i









c2i+1 = c0(−1)i+1+|f |









P

i









(4.7)

The relations (4.3), (4.7) can be written in a compact form as

ci = c0(−1)i|f |+
i(i+1)

2









N

i









.

and the theorem is proved. We mention that the super-bilinear operator proposed by

McArthur and Yung [15] is a particular case of the above super-Hirota operator.

We shall note the bilinear operator as

SN(f, g) := S
N
x f • g

In the Appendix 1 we list several simple properties of this super-Hirota operator.

V. BILINEAR SUSY KDV-TYPE EQUATIONS

SUSY KdV of Manin-Radul-Mathieu

In order to use the super-bilinear operators defined above we shall consider the following

nonlinear substitution for the superfield:

Φ(t, x, θ) = 2D3 log τ(t, x, θ) (5.1)
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where τ is an even superfield. Introducing in SUSY KdV (3.2) and integrating with respect

to x we obtain the following

2D∂t log τ + 3{(2D3 log τ)(2∂2x log τ)}+ 2D7 log τ = 0

Using the properties (6.4), (6.5), (6.6) we find

SxDtτ • τ

τ 2
+ 3

(

S
3
xτ • τ

τ 2
D

2
xτ • τ

τ 2

)

+ 2∂3x(
Dτ

τ
) = 0 (5.2)

Now we are using the following property of the classical Hirota operator [19]

∂3x(
a

b
) =

D
3
xa • b

b2
− 3

Dxa • b

b2
D

2
xb • b

b2

In our case a = Dτ and b = τ . Accordingly

2∂3x

(

Dτ

τ

)

=
S
7
xτ • τ

τ 2
− 3

(

S
3
xτ • τ

τ 2
D

2
xτ • τ

τ 2

)

Plugging into (5.2) we find the following super-bilinear form

(SxDt + S
7
x)τ • τ = 0, (5.3)

which is equivalent with the form found by McArthur and Yung [15]

Sx(Dt +D
3
x)τ • τ = 0. (5.4)

In order to find the super-soliton solutions we are going to use the classical perturbative

method namely the series

τ = 1 + ǫf (1) + ǫ2f (2) + ǫ3f (3) + ... (5.5)

where f (i) are even functions. Equating the power of ǫ we find:

• for ǫ,

D(∂t + ∂3x)f
(1) = 0 (5.6)
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• for ǫ2,

2D(∂t + ∂3x)f
(2) = −Sx(Dt +D

3
x)f

(1) • f (1). (5.7)

• for ǫ3,

D(∂t + ∂3x)f
(3) = −Sx(Dt +D

3
x)f

(1) • f (2). (5.8)

• for ǫ4,

2D(∂t + ∂3x)f
(4) = −2Sx(Dt +D

3
x)f

(1) • f (3) − Sx(Dt +D
3
x)f

(2) • f (2) (5.9)

and so on.

Now if we take f (1) = ekx−k3t+θζ̂+η(0) the equation (5.6) is satisfied, f (2) = 0, f (3) = 0.... and

the series (5.5) truncates. So, the 1 supersoliton solution is given by

τ (1) = 1 + ekx−k3t+θζ̂+η(0) (5.10)

for every k and ζ̂.

Introducing in the super-bilinear equation the 1 soliton solution F = 1 +

exp (kx+ ωt+ ζ̂θ) one finds the dispersion supermanifold equation:

P (k, ω, ζ̂) ≡ (ζ̂ + θk)(ω + k3) = 0

which imposes ω = −k3 for every ζ̂.

In order to find 2 super-soliton solution we take f (1) = eη1 +eη2 where ηi = kix−k
3
i t+θζ̂i

The equation (5.7) becomes

2D(∂t + ∂3x)f
(2) = 6k1k2(k1 − k2)[(ζ̂1 − ζ̂2) + θ(k1 − k2)]e

η1+η2 (5.11)

Taking into account that τ is a Grassmann even function, f (2) must be also even. Ac-

cordingly, the general solution of (5.11) has the form

f (2) =
[

m12(k1, k2, ζ̂1, ζ̂2) + θn̂12(k1, k2, ζ̂1, ζ̂2)
]

eη1+η2 ,
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m12 and n̂12 being Grassmann valued even and odd functions. Due to the fact that we have

two Grassmann parameters (ζ̂1 and ζ̂2) the most general expressions for m12 and n̂12 are

given by,

m12 = (k1 − k2)
2/(k1 + k2)

2 + γ(k1, k2)ζ̂1ζ̂2

n̂12 = a(k1, k2)ζ̂1 + b(k1, k2)ζ̂2

The above forms for m12 and n̂12 could also be obtained by expanding in power series of ζ̂1

and ζ̂2 and taking into account that in the bosonic limit (ζ̂i → 0), m12 → (k1−k2)2/(k1+k2)2

(ordinary KdV interaction term) and n̂12 → 0

Introducing in the equation (5.11) we find

f (2) =





(

k1 − k2
k1 + k2

)2

+ 2
k1 − k2

(k1 + k2)2
ζ̂1ζ̂2 + 2θ

(k1 − k2)(k1ζ̂2 − k2ζ̂1)

(k1 + k2)2



 eη1+η2

Introducing the above forms for f (1) and f (2) in (5.8) one obtains f (3) = 0 and then

f (4) = 0, f (5) = 0... i.e. the series truncates. So the 2 super-soliton solution is given by;

τ (2) = 1 + eη1 + eη2 + A12e
η1+η2 (5.12)

where

A12 =

(

k1 − k2
k1 + k2

)2

+ 2
k1 − k2

(k1 + k2)2
ζ̂1ζ̂2 + 2θ

(k1 − k2)(k1ζ̂2 − k2ζ̂1)

(k1 + k2)2
(5.13)

One can easily see that the classical general procedure for finding the interaction term given

by the equation (2.7)

A12P (k1 + k2) + P (k1 − k2) = 0

does not work in the SUSY case.

In order to find 3 supersoliton solution we consider

f (1) = eη1 + eη2 + eη3

and the equation for f (3) (5.8)becomes:

D(∂t + ∂3x)f
(3) = −(SxDt + S

7
x)(e

η1 • A23e
η2+η3 + eη2 • A13e

η1+η3 + eη3 • A12e
η1+η2) (5.14)
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The solution f (3) of this equation (which is very complicated) does not cancel the right hand

side of the equation (5.9). So, f (4) is not zero and the series (5.5) cannot be truncated.

Accordingly the SUSY KdV equation does not have 3 super-soliton solution in the standard

form for arbitrary ki’s and ζ̂i’s. This seems a quite strange paradox, because SUSY KdV is

integrable in the sense of Lax.

Anyway, imposing the constraint kiζ̂j = kj ζ̂i for every i and j it is easy to prove (see

Appendix 2) that SUSY KdV possesess the following N-soliton solution

τ (N) =
∑

µ=0,1

exp (
N
∑

i=1

µiηi +
∑

i<j

Aijµiµj), (5.15)

where

ηi = kix− k3i t+ θζ̂i + η
(0)
i

expAij =

(

ki − kj
ki + kj

)2

kiζ̂j = kj ζ̂i

Solutions with constraints on parameters have been found also by Liu and Manas [10], using

SUSY Darboux transformation.

SUSY KdV-B

This situation is completely different in the SUSY KdV-B case

Φt +D6Φ+ 6D2ΦDΦ = 0. (5.16)

With the same nonlinear substitution

Φ = 2D3 logF

we obtain the ordinary form

(DtDx +D
4
x)F • F = 0

which has N-super-soliton solution (2.5) the fermionic contribution being only an additive

phase i.e. ηi = kix− k3i t+ ζ̂iθ.
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SUSY Sawada-Kotera-Ramani

For N = 1 SUSY Sawada-Kotera-Ramani (3.5) using the nonlinear substitution,

Φ = 2D3 log τ(t, x, θ)

we shall find the following super-bilinear form:

(SxDt + S
11
x )τ • τ = 0 (5.17)

In a similar way we find the 2 super-soliton solution

τ (2) = 1 + eη1 + eη2 +





(

k1 − k2
k1 + k2

)2
k21 − k1k2 + k22
k21 + k1k2 + k22

+ 2
k1 − k2

(k1 + k2)2
k21 − k1k2 + k22
k21 + k1k2 + k22

ζ̂1ζ̂2



×

×(1 + 2θ
k2ζ̂1 − k1ζ̂2
k1 − k2

)eη1+η2

Also with the same constraint kiζ̂j = kj ζ̂i we find

τ (N) =
∑

µ=0,1

exp (
N
∑

i=1

µiηi +
∑

i<j

Aijµiµj), (5.18)

where

ηi = kix− k5i t+ θζ̂i + η
(0)
i

expAij =

(

ki − kj
ki + kj

)2 k2i − kikj + k2j
k2i + kikj + k2j

SUSY Hirota-Satsuma

For N = 1 SUSY Hirota-Satsuma equation using the nonlinear substitution:

Φ = 2D log τ(t, x, θ)

one obtains the super-bilinear form:

(S5
xDt − S

3
x − SxDt)τ • τ = 0 (5.19)

The 2 supersoliton solution is given by:

τ (2) = 1 + eη1 + eη2 +





(

k1 − k2
k1 + k2

)2

M12 + 2
k1 − k2

(k1 + k2)2
M12ζ̂1ζ̂2



 (1 + 2θ
k2ζ̂1 − k1ζ̂2
k1 − k2

)eη1+η2
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where

M12 =
(k1 − k2)

2 + k1k2[(k1 − k2)
2 − (k21 − 1)(k22 − 1)]

(k1 − k2)2 − k1k2[(k1 − k2)2 − (k21 − 1)(k22 − 1)]

and ηi = kix− kit/(k
2
i − 1) + ζ̂iθ. With the constraints kiζ̂j = kj ζ̂i the equation admits also

N soliton solution with

Aij =

(

k1 − k2
k1 + k2

)2

M12.

SUSY Burgers

An interesting case is the SUSY extension of the Burgers equation, namely

Φt + ΦDΦx + Φxx = 0

It is welknown that the classical Burgers equation can be linearized via Cole-Hopf transform.

If we try the nonlinear substitution (which is the natural supersymmetrization of the Cole-

Hopf transform):

Φ = 2D log τ(t, x, θ)

we find:

SxDtτ • τ + 2D2
xDτ • τ = 0.

This form is not super-gauge invariant. Accordingly we are forced to use two functions for

substitution, namely

Φ =
Ĝ(t, x, θ)

F (t, x, θ)

where Ĝ is an odd Grassmann function and F is an even one. Using the relation (6.7) from

Appendix 1 we obtain the following gauge-invariant super-bilinear form

(Dt +D
2
x)Ĝ • F = 0

D
2
xF • F = S

3
xĜ • F

This system admits the following 1 super-shock solution:

Ĝ = 2(ζ̂ + θk)e(kx−k2t+ζ̂θ), F = 1 + e(kx−k2t+ζ̂θ)

16



We can ask ourselves if it is possible to obtain super-bilinear forms for SUSY equations

of the nonlinear Klein-Gordon type. In fact the SUSY sine-Gordon equation(3.9) can be

written in the following form:

[DT , DX ]Φ(T,X, θ, θt) = 2i sinΦ(T,X, θ, θt) (5.20)

where we have introduced the light-cone variables X := i(t − x)/2, T := i(t + x)/2, and

θ := θ1, θ2 := −θt. Covariant derivatives are DX := ∂θ + θ∂X , DT := ∂θt + θt∂T and the

square braket means the commutator. Using the nonlinear substitution (G and F are even

functions)

Φ = 2i log
(

G

F

)

,

we find the following quadrilinear expression

2i{F 2(G[DT , DX ]G− [DTG,DXG])−G2(F [DT , DX ]F − [DTF,DXF ])} = F 4 −G4

It is easy to see that the bilinear operator

SXT τ • τ := τ [DT , DX ]τ − [DT τ,DXτ ]

is super-gauge invariant with respect to the super-gauge

eΘ := e(kx+ωt+θζ̂+θtΩ̂+liniars).

Accordingly we can choose the following super-bilinear form, formally the same with stan-

dard sine-Gordon equation,

SXTG •G =
1

2i
(F 2 −G2)

SXTF • F =
1

2i
(G2 − F 2) (5.21)

but, it is not clear how to compute the super-kink solutions.

¿From these examples it seems that gauge-invariance is a useful concept for bilinear

formalism in the supersymmetric case, though there is no deep reason for that. As a conse-

quence we was able to bilinearize two supersymmetric equations of KdV type and the SUSY

17



sine-Gordon. The case of SUSY versions for mKdV, NLS, KP etc. requires further investi-

gation because it seems that only certain supersymmetric extensions are super-bilinearizable.

Although we do not know if the SUSY extension of Sawada-Kotera proposed above are inte-

grable in the sense of Lax, it admits super-bilinear form and only 2 super-soliton solution for

arbitrary choice of solitary waves. The strange fact is that SUSY KDV equation of Mathieu

which is known to be Lax integrable does not admit Ngeq3 supersoliton solution in the

canonical form. Probably a singularity analysis implemented on the super-bilinear form will

reveal the connection between Hirota-integrability and Lax-integrability.

VI. APPENDIX 1

In this section we are going to list several properties of the super-Hirota bilinear operator

which are useful in deriving bilinear forms.

S
2N
x f • g = D

N
x f • g (6.1)

S
2N+1
x eη1 • eη2 = [ζ̂1 − ζ̂2 + θ(k1 − k2)](k1 − k2)

Neη1+η2 (6.2)

S
2N+1
x 1 • eη1 = (−1)N+1(ζ̂ + θk)kNeη = (−1)N+1

S
2N+1
x eη • 1 (6.3)

where ηi = kix+ θζ̂i and ζ̂i are odd Grassmann numbers.

2D log τ =
Dτ

τ
(6.4)

2D3 log τ =
S
3
xτ • τ

τ 2
(6.5)

2D∂t log τ =
SxDtτ • τ

τ 2
(6.6)

where τ is an even Grassmann function Moreover if G and F are Grassmann functions (with

F even) then

D3(
G

F
) =

S
3
xG • F

F 2
− (−1)|G|G

F

S
3
xF • F

F 2
(6.7)

18



VII. APPENDIX 2

In this section we are going to sketch the proof of the formula for N supersoliton solution

for bilinear SUSY KdV equation. We are rely on the proof of Hirota for ordinary N-soliton

solution in the case of KdV [21], [23]. Thus, introducing the expression of the N supersoliton

solution

τ (N) =
∑

µ=0,1

exp (
N
∑

i=1

µiηi +
∑

i<j

Aijµiµj),

ηi = kix− k3i t+ θζ̂i + η
(0)
i

expAij =

(

ki − kj
ki + kj

)2

kiζ̂j = kj ζ̂i

into the super bilinear form

(SxDt + S
7
x)τ • τ = 0,

and taking into account the properties (6.1) and (6.2) we find

∑

µ=0,1

∑

ν=0,1

{(
N
∑

i=1

(µi − νi)Λi)((−)
N
∑

i=1

(µi − νi)k
3
i ) + (

N
∑

i=1

(µi − νi)Λi)(
N
∑

i=1

(µi − νi)ki)
3}×

× exp (
N
∑

i=1

(µi + νi)ηi +
∑

i<j

(µiµj + νiνj)Aij) = 0

where Λ = ζ̂i + θki. Since µi, νi = 0, 1 it is clear that we only have exponential terms of the

form

exp (
n
∑

i=1

ηi +
m
∑

i=n+1

2ηi), 0 ≤ n ≤ N, n ≤ m ≤ N

Next we show that the coefficient of this general exponential term is zero, the coefficient

being given by, [21] [23]:

∆ =
∑

σ=0,1

{(−
N
∑

i=1

σiΛi)(
N
∑

i=1

σik
3
i ) + (

N
∑

i=1

σiΛi)(
N
∑

i=1

σiki)
3}

n
∏

i<j

(σiki − σjkj)
2 (7.1)

where σi = µi − νi. We do not go into details because the procedure of deriving the above

coefficient goes absolutely in the same way as in the case of ordinary KdV equation. This

is due to the fact that the interaction term Aij is the same for KdV and SUSY KdV.
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Because Λ = ζ̂i + θki the coefficient ∆ becomes on the components

∆ ≡ ∆0 +∆1 =
∑

σ=0,1

{(−
N
∑

i=1

σiζ̂i)(
N
∑

i=1

σik
3
i ) + (

N
∑

i=1

σiζ̂i)(
N
∑

i=1

σiki)
3}

n
∏

i<j

(σiki − σjkj)
2+ (7.2)

+θ
∑

σ=0,1

{(−
N
∑

i=1

σiki)(
N
∑

i=1

σik
3
i ) + (

N
∑

i=1

σiki)(
N
∑

i=1

σiki)
3}

n
∏

i<j

(σiki − σjkj)
2

Hirota proved that the second term is zero [21], [23]. The first term is also zero because,

using the property ζ̂ikj = ζ̂jki, it can be written as

∆0 =
ζ̂m
km

∆1 = 0
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