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Abstract

Differential production cross sections of K± mesons have been measured in p + C and p + Au

collisions at 1.6, 2.5 and 3.5 GeV proton beam energy. At beam energies close to the produc-

tion threshold, the K− multiplicity is strongly enhanced with respect to proton-proton collisions.

According to microscopic transport calculations, this enhancement is caused by two effects: the

strangeness exchange reaction NY → K−NN and an attractive in-medium K−N potential at

saturation density.

PACS numbers: PACS 25.75.Dw
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The last decade witnessed substantial experimental and theoretical efforts in the study of

in-medium properties of strange particles. In particular, a large body of new data on the pro-

duction of kaons and antikaons in nucleus-nucleus collisions at beam energies below or close

to the nucleon-nucleon (NN) threshold has been collected. It was found that the K−/K+

ratio is enhanced in heavy-ion collisions as compared to proton-proton collisions [1, 2, 3, 4].

The enhanced production of K− mesons per number of participants was found to be partly

due to strangeness exchange reactions (πY → K−N with Y = Λ,Σ) which are strongly

suppressed in p+p reactions. Nevertheless, the measured kaon and antikaon yields can only

be reproduced by transport model calculations when taking into account density-dependent

K meson nucleon (KN) potentials parameterizing effectively the in-medium modification

of the K mesons [6, 7]. The pronounced patterns of the elliptic and directed flow of K+

mesons provide independent hints for the existence of a repulsive kaon-nucleon in-medium

potential [8, 9].

The quantitative study of in-medium effects is complicated by the fact that the KN po-

tentials depend on the nuclear density which varies strongly with time during the course of

a nucleus-nucleus collision. In order to avoid this complication, one can investigate proton-

nucleus collisions where the nuclear density is well defined during particle production. Al-

ready at saturation density the in-medium effects are expected to influence strangeness pro-

duction at beam energies close to the production threshold in NN collisions (1.58 GeV for

pp → K+Λp and 2.5 GeV for pp → K+K−pp). Whereas some data exist on K+ meson pro-

duction in proton-nucleus collisions at beam energies between 1.2 and 2.5 GeV proton energy

[10, 11], very little is known about K− production in proton-nucleus collisions at threshold

beam energies. Calculations predict a measurable in-medium effect on the yield and the

phase space distributions of antikaons produced in proton-nucleus collisions at threshold

energies [12].

So far only two experiments on antikaon production in proton-nucleus collisions close to

threshold energies have been performed. At the KEK-PS K− mesons were measured at a

fixed laboratory angle of 5.1 degrees and at a fixed K− momentum of 1.5 GeV/c using proton

kinetic energies of 3.5, 4.0, and 5.0 GeV and light targets (C, Cu) [13]. At the ITEP-PS

K− mesons were measured at a fixed laboratory angle of 10.5 degrees and at a fixed K−

momentum of 1.28 GeV/c using proton kinetic energies between 2.3 and 2.92 GeV and light

targets (Be, Al) [14]. In both cases, however, neither the emission angle nor the momentum
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of the antikaons have been varied. These data are difficult to interpret as the extrapolation

of the measured antikaon yields to full phase space are affected by uncertainties in the

momentum distribution of the antikaons and their angular distribution.

In order to improve the data situation and to disentangle the above mentioned effects we

performed a systematic investigation of K+ and K− meson production in proton-nucleus

collisions. In this Letter we present results of experiments using proton beams of 1.6, 2.5

and 3.5 GeV kinetic energy impinging on a light and a heavy target. For the first time the

spectral and angular distributions of antikaons have been measured in this energy regime.

The experiments were performed with the Kaon Spectrometer, KaoS, at the heavy-ion

synchrotron, SIS, at GSI in Darmstadt [15]. We bombarded C and Au targets (thickness 7

mm and 2 mm, respectively) with a proton beam having an intensity of up to 1011 protons

per spill (spill duration ∼ 10 s). The emitted charged particles were detected at laboratory

angles of θlab = 40◦, 48◦, 56◦, and 64◦. By using three settings of the magnetic field a

coverage of laboratory momenta from plab = 0.3 GeV/c to 1.1 GeV/c was obtained.

Figure 1 shows the production cross sections for K+ and K− mesons as a function of their

laboratory momentum measured in inclusive proton-carbon (left column) and proton-gold

collisions (right column) at 1.6, 2.5, and 3.5 GeV proton energy (from top to bottom). The

laboratory angles are indicated. The error bars represent the statistical uncertainties. An

overall systematic error of 15% due to efficiency corrections and beam normalization has to

be added.

The lines in Figure 1 represent a Jüttner like distribution function

E
dσ

d3p
=

σfit

4πm2
KTK2(mK/T )

(p · u) exp
(

−
(p · u)
T

)

(1)

with p · u ≡ (Elab − βplab cos θlab)/
√
1− β2, where Elab is the K± energy in the laboratory

system and β is the velocity of the kaon emitting source; mK denotes the K± rest mass,

and K2 stands for a modified Bessel function. In a local rest frame (β = 0), the Jüttner

distribution reduces to the known Maxwell-Boltzmann distribution function. Expression

(1) was fitted simultaneously to the set of differential cross sections measured at different

laboratory angles for each system at each energy. In this approach it is assumed that the

particles were emitted isotropically from a source which moves with the velocity β and which

has a momentum distribution characterized by a temperature T . The results of this fitting

procedure for the source velocity, the temperature and the total production cross section
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σfit are listed in Table I. The errors of the fit parameters β and T are always on the order

of 3 − 5%. The production cross section σfit is affected by an additional systematic error

of 20% due to uncertainties in the relative normalization of the measurements performed at

different magnetic field values. This error has to be added to the values given in Table I.

The values of β for proton-nucleus collisions are substantially smaller than the corre-

sponding center-of-mass velocity of the nucleon-nucleon system. This slowing-down of the

apparent source velocity may be caused by two effects: (i) the impinging proton collides

with a cluster of 2 - 4 correlated target nucleons, and (ii) the kaons are back-scattered at

the target nucleus. In both cases, the source velocity β should be larger for proton-carbon

than for proton-gold collisions. Indeed, this is observed for K+ mesons. In the case of K−

mesons, however, the velocity β is almost independent of the target nucleus mass. This

observation indicates that the production process of K− mesons is more involved.

The apparent temperature T is significantly smaller for K− mesons than for K+ for

the same collision system. A similar observation was made in nucleus-nucleus collisions

at near-threshold beam energies [4]. The interpretation of this effect was related to the

delayed emission of K− mesons due to strangeness exchange reactions like πY → K−N

with Y = Λ,Σ.

In order to visualize the effect of the nuclear medium on strangeness production we

compare our data from proton-nucleus collisions to data measured in proton-proton and

nucleus-nucleus collisions. Figure 2 shows the K+ and K− multiplicities MK normalized

to the number of participating nucleons Apart as a function of the excess energy. The

multiplicity is defined asMK = σfit/σR with σR = πR2 the geometrical reaction cross section.

Using R = (0.6+1.2×A1/3) fm (proton radius 0.6 fm) one obtains σR = 0.35 b for p+C and σR

= 1.8 b for p+Au. The excess energy is defined as the difference between the energy available

in a free NN collision and the K+ or K− production threshold energies in NN scattering.

For p+A collisions, we define Apart via the source velocity β = pbeam/(E1beam +m2). Here

pbeam and E1beam denote the beam proton momentum and total energy and m2 is the mass

of the target nucleons involved in the K± production. Hence, for p+A collisions we obtain

Apart = 1 + m2/mN with the nucleon mass mN . For impact parameter integrated A+A

collisions, the average number of participating nucleons equals A/2, while for proton-proton

collisions we take Apart = 2.

At beam energies well above threshold, the values of MK±/Apart from proton-nucleus
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collisions agree with the ones from proton-proton collisions (represented by the dashed lines).

At threshold energies, however, the proton-nucleus data clearly exceed the proton-proton

data, but undershoot significantly the nucleus-nucleus data. The enhancement ofMK±/Apart

when going from p+p, over p+A to A+A collisions at threshold beam energies is mainly due

to Fermi motion, secondary collisions, and increased density. These effects lower the effective

thresholds and cause a large difference in MK±/Apart between p+p and p+A, but only a

moderate difference between p+C and p+Au, where the number of participant nucleons

differ less than a factor of 2, and where the density is comparable. Multiple collisions

involving several projectile nucleons can only occur in A+A but not in p+A reactions. In

addition, multiple collisions occur more frequently in A+A than in p+A due to the increased

density. These effects are nonlinear in Apart, and lead to an enhancement of MK±/Apart in

A+A collisions with respect to p+A collisions.

The data presented in figure 2 indicate that the enhancement factor between p+p, p+A,

and A+A collisions is significantly larger for K− mesons than for K+ mesons. Such an

effect is expected for an increasing contribution of strangeness exchange reactions to K−

production, and for density dependent in-medium effects. Strangeness exchange reactions

are also responsible for the low apparent temperature of the K− meson spectra as compared

to the K+ meson spectra, and for the weak dependence of the source velocity β on the target

mass: The K− mesons freeze-out at a late stage of the collision when the system has lost

its memory on entrance channel effects.

It is interesting to note that the difference in MK−/Apart between p+C and p+Au col-

lisions is relatively small, similar to the K+ mesons. This observation again indicates the

important role of strangeness exchange reactions: The yield of K− mesons created via

strangeness exchange depends only on the abundance of hyperons, and not on the numbers

of nucleons in the system, as both K− production ( via NY → K−NN) and K− absorption

(via K−N → Y π ) is proportional to the number of nucleons. Therefore, the target mass

dependence of K− and K+ production is very similar. Moreover, the in-medium potentials

depend not on mass, but on the nucleon density which does not differ much between p+C

and p+Au collisions.

The interplay of production and absorption of K− mesons via strangeness exchange re-

actions depends on the in-medium properties of the strange particles. For example, a K−N

potential in the nuclear medium can modify the Q-values for these reactions. In order to
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study the role of in-medium effects on K− production in p+A collisions more quantitatively,

we discuss the ratio

R =
dσ

dm⊥

∣

∣

∣

∣

∣

K−

/

dσ

dm⊥

∣

∣

∣

∣

∣

K+

(2)

of invariant cross sections of inclusive K− over K+ production as a function of the transverse

mass in p+C and p+Au collisions at an energy of 2.5 GeV (see Figure 3). The transverse

mass m⊥ is defined as
√

p2⊥ +m2
K with p⊥ the transverse momentum. The data presented

in Figure 3 are integrated over the measured angular range (from 36◦ to 60◦) and compared

to results of BUU calculations. A description of the BUU model employed may be found

in [17]. The BUU calculations represented by the solid and dashed lines take into account

the strangeness exchange reactions πY → K−N and NY → K−NN . The first channel

is dominant in Au+Au collisions. In the C+C system, both channels are about equally

important. In proton-nucleus collisions, however, it turns out that the process NY →

K−NN contributes about twice as much to K− production as the πY → K−N reaction.

The reason for that is the low probability to create both a pion and a Λ hyperon with only

one proton as the projectile. According to the BUU calculations, the strangeness exchange

reactions dominate over the direct K− production processes, both in nucleus-nucleus as well

as proton-nucleus collisions. For example, in proton-nucleus at 2.5 GeV the contribution

of strangeness transfer processes amounts to 50-60%, and for nucleus-nucleus collisions it is

even larger (70-80%).

In order to discuss the possible role of density dependent in-medium potentials, it is

important to know at which densities the finally observed K− mesons are produced in the

various collision systems. For example, for p+C (p+Au) collisions at a beam energy of

2.5 GeV the BUU calculations predict an average density about 0.8 (0.9) times the normal

nuclear matter density, whereas for C+C (Au+Au) collisions the average value is slightly

above 1.1 (1.5) times saturation density. The observed K+ mesons are produced earlier,

and, hence, at larger average densities: the BUU calculations predict a value of 0.9 (1.0)

times normal nuclear matter density for p+C (p+Au) collisions, while for C+C (Au+Au)

collisions a value of about 1.4 (2.2) is obtained for the same beam energy per nucleon.

Figure 3 depicts theK−/K+ ratio as function of transverse mass for p+Au (left panel) and

p+C collisions (right panel) at an proton beam energy of 2.5 GeV. The data (full dots) are

compared to the results of BUU calculations with and without in-medium K−N potentials.
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The theoretical uncertainties in the K+ production channels – which directly affect the K−

meson yield via the strangeness exchange reactions – essentially cancel out in the K−/K+

ratio. When assuming a K−N potential of about −80 MeV (dashed curve in Fig. 3) the

calculations agree reasonably well with the p+Au data. In the case of p+C collisions, the

calculations slightly underestimate the low energy part and overshoot the high energy part of

the ratio. The discrepancy between the data and the calculations neglecting K−N potentials

(solid lines) clearly demonstrates the important role of in-medium effects. The calculations

also take into account a K+N potential of +25 MeV at saturation density. Calculations

based on momentum dependent potentials as discussed in [12] yield a similar agreement

with the data for an momentum averaged K−N potential of -80 MeV. From the analysis of

nucleus-nucleus data a value of -110±15 MeV has been obtained for the K−N potential at

saturation density [6] (see also the compilation in [18]). A more detailed analysis of our data

with respect to in-medium effects calls for an improved theoretical approach, e.g. transport

calculations including off-shell effects and in-medium spectral functions [19, 20, 21, 22].

In summary, we have presented experimental data on K+ and K− production in p+C

and p+Au collisions at beam energies close to the production thresholds. This is the first

measurement of phase space distributions of antikaons in proton induced reactions on nuclei

in this energy range. The results presented for K± production represent an important data

set filling the gap between nucleon-nucleon and nucleus-nucleus collisions. The comparison

of the data to results of microscopic transport calculations indicate that the in-medium

K−N potential is on the order of -80 MeV at normal nuclear density.

This work was supported by the German Federal Government (BMBF), by the Polish

Committee of Scientific Research (No. 2P3B11515) and by the GSI fund for Universities.
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TABLE I: Beam energy, target, K meson species, production cross section, source temperature,

and source velocity. The values of σfit, T , and β are obtained by the fitting procedure described

in the text. A systematic error of 20% has to be added to the values of σfit. The center-of-mass

velocity for the nucleon-nucleon system is β = 0.68, 0.76, and 0.81 for beam energies of 1.6, 2.5,

and 3.5 GeV, respectively.

Ebeam (GeV) target K σfit(mb) T (MeV) β

1.6 C K+ 0.070 ± 0.006 45.6 0.48

2.5 C K+ 0.89 ± 0.08 69.9 0.63

3.5 C K+ 2.04 ± 0.25 88.2 0.65

1.6 Au K+ 0.83 ± 0.05 49.0 0.37

2.5 Au K+ 8.53 ± 0.95 73.0 0.53

3.5 Au K+ 20.74 ± 1.69 90.8 0.52

2.5 C K− 0.0069 ± 0.0006 45.1 0.55

3.5 C K− 0.065 ± 0.007 65.9 0.64

2.5 Au K− 0.059 ± 0.008 51.1 0.58

3.5 Au K− 0.48 ± 0.06 68.1 0.58
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FIG. 1: Invariant production cross sections of K+ (open symbols) and K− mesons (full symbols)

for inclusive proton-carbon (left row) and proton-gold collisions (right row) at 1.6, 2.5, and 3.5

GeV (from top to bottom) as a function of laboratory momentum. The lines correspond to the

distribution (1) fitted to the data (see text and Table I).
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FIG. 2: Multiplicities of K+ mesons (upper panel) and K− mesons (lower panel) per participating

nucleon for proton-carbon (triangles) and proton-gold collisions (squares) as a function of the

available energy in the NN center-of-mass system (i.e. the Q-value). The dashed curves correspond

to parameterizations [16] of the measured p+p data. Data for carbon-carbon (circles) and gold-gold

(stars) are taken from [2] and [4, 5], respectively.
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FIG. 3: Ratio of invariant production cross sections of K− mesons over K+ mesons for inclusive

proton-gold (left panel) and proton-carbon collisions (right panel) as a function of transverse mass.

The data (full circles) were taken at a beam energy of 2.5 GeV and were integrated over laboratory

angles between θlab = 36◦ and 60◦. The solid and dashed curves depict results of BUU transport

model calculations including strangeness exchange as well as a K+N potential of +25 MeV. These

calculations use K−N potentials as indicated.

12


	References

