
ar
X

iv
:p

hy
si

cs
/0

30
40

15
v1

  [
ph

ys
ic

s.
ge

n-
ph

] 
 4

 A
pr

 2
00

3

1

The Rotating Magnet

P. Hraskó∗

Abstract: Axisymmetric permanent magnets be-
come electrically polarized due to their rotation
around the symmetry axis. This phenomenon is con-
sidered in detail for both conducting and dielectric
magnets. The results are applied to the Earth which
is predicted to be electrically polarized. It is sug-
gested that this polarization can be detected in a
tethered satellite experiment.

The World Dynamo

Many years ago I read as a schoolboy an excit-
ing book about a dogged ingeneer who took it into
his head to lay down a massive electric cable along
a large segment of a meridian, for, according to his
calculations, the rotation of the Earth in its own mag-
netic field should induce in the cable currents of enor-
mous strength and this ”world dynamo” — that was
the name of the book — would supply mankind with
cheep electricity.

Though I was charmed with the idea I had some-
thing on my mind: What if the magnetic field ro-
tated together with the Earth? If it did the cable
would never cross the lines of force of the field and
no current would be induced. I did not realized until
much later that my question itself was rather prob-
lematic since the meaning of rotation of an axisym-
metric magnetic field around its symmetry axis was
far from being obvious. If lines of force existed in real-
ity and the motion of either of them could be followed
in time, my question would be all right and could in
principle be answered. But these lines are only math-
ematical abstractions deviced to aid the visualization
of the field structure and have no real existence. The
magnetic field of a magnet is in fact independent of
whether the magnet rotates around its symmetry axis
or not — in this respect the engineer was certainly
right.

In what follows we will consider a homogeneous
spherical magnet of radius a, rotating with a constant
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angular velocity Ω, whose magnetization density M

is parallel to the axis of rotation (assumed to be the
z-axis). The cable of the world dynamo will be repre-
sented by a rigid linear conductor L, not necessarily
a plane curve, which connects the ”north pole” and
the ”equator” of the sphere. The conductor L may
also rotate with an angular velocity ω which is par-
allel to Ω but may differ from it in magnitude. (In
the world dynamo we have ω = Ω and L lies along a
meridian on the surface of the Earth but it will turn
out expedient to deal with the more general case.) At
the endpoints A (ϑ = 0◦) and B (ϑ = 90◦) the linear
conductor is connected electrically to the magnet by
means of sliding contacts so as to make L part of an
electric circuit closed through the magnet.

A

B

L

2a

,,

Below we will restrict ourselves to the discussion
of the physical basis, underlying the world dynamo
idea. It will be left to the reader to judge whether
such an extraordinary power plant if realized in prac-
tice would indeed be continuously supplying electric
power or not.

The Rotating Conducting Magnet

Consider a rotating metallic magnet of conductiv-
ity γ temporarily stripped of the linear conductor L.
In a conductor at rest the connection between the
current density J and the electric field E is given
by the Ohm’s law J = γE. When the conductor is
moving the electric field must be supplemented by the
electromotive force (V ×B) and in this more general
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case the Ohm’s law becomes

J = γ[E + (V ×B)]. (1)

Let us choose the origin of the coordinate system at
the center of the sphere. Then the element of the
magnet at r will have the velocity

V = (Ω× r). (2)

From this formula it is obvious that we are work-
ing in the inertial system in which the center of the
magnet is at rest rather than in the system, rotating
together with the magnet around this point. In what
follows we will never replace our reference frame with
the corotating one.
Just as it is in the case of a conductor at rest the

current density in a rotating conducting sphere also
vanishes under stationary conditions. In the latter
case, however, the electric field does not disappear
together with the current density since when J = 0
we obtain from (1) the electric field

E = −(V ×B) (r < a) (3)

which is associated with some definite volume and
surface charge densities ρ and σ. Eq. (3) and the
Maxwell-equation divE = ρ/ǫ0 determine the vol-
ume charge density:

ρ = −ǫ0 div(V ×B).

As it is known from magnetostatics the induction
within a homogeneously magnetized sphere is equal
to

B =
2

3
µ0M (r < a). (4)

Therefore,

(V ×B) =
2

3
µ0(V ×M )

and, using (2), we obtain

(V ×M) =
(

(Ω× r)×M
)

=

= (M ·Ω)r − (M · r)Ω.
(5)

Let us take now into account that the constant vec-
tors M and Ω are parallel to each other, div r = 3
and, finally,

div
(

(M · r)Ω
)

= MΩ.

Then

div(V ×M) = 2MΩ (6)

and

ρ = −
4

3
ǫ0µ0MΩ. (7)

Using (4) it is easy to show that for the electric field
(3) rotE = 0 which is the second Maxwell-equation
for E when the fields are constant in time.
The surface charge density can be calculated as in

electrostatics. We have

σ = ǫ0(E
+
r − E−

r ), (r = a) (8)

where E+
r and E−

r are the radial components of the
electric field on the outer (+) and inner (–) side of the
surface of the magnet. Our previous formulae permit
us to write

E−

r = −(V ×B)r = −VϑBϕ + VϕBϑ. (9)

Since B has only a z-component we have

Bϕ = 0 and Bϑ = −
2

3
µ0M sinϑ. (10)

The only nonzero component of V is Vϕ which is
equal to Ωr sinϑ. Hence

E−

r = −
2

3
aµ0MΩ sin2 ϑ (r = a). (11)

In order to calculate E+
r the electrostatic potential Φ

outside the sphere must be known. From the poten-
tial the electric field is obtained as a gradient:

E = −∇Φ. (12)

Outside the sphere the charge density is zero and Φ
obeys the Laplace-equation

△Φ = 0, (r > a) (13)

from the solution of which E+
r can be calculated as

E+
r = −

∂Φ

∂r

∣

∣

∣

∣

r=a

. (14)



3

In Appendix 1 we show that

Φ = −
1

9
a5µ0MΩ ·

1

r3
(3 cos2 ϑ− 1) (r ≥ a),

(15)

from which we obtain

E+
r = −

1

3
aµ0MΩ(3 cos2 ϑ− 1). (16)

Therefore, the surface charge density is given by the
formula

σ =
1

3
aǫ0µ0MΩ(1 + cos2 ϑ). (17)

It is straightforward to show that the total surface
charge compensates exactly the total volume charge.
Since both the induced volume and surface charges

rotate together with the magnet they give rise to cor-
responding current densities. In the case of the vol-
ume charge density this current density is equal to

∆J = ρV = −
4

3
ǫ0µ0MΩV . (18)

This ∆J does not contribute to the l.h.s. of the
Ohm’s law (1) because it arises from the rotation
rather from the effect of the field E. However, ∆J

generates, through the Maxwell-equation rot∆B =
µ0∆J , the magnetic field ∆B which must be added
to B on the r.h.s. of (1). As a consequence this same
correction appears on the r.h.s. of (3) also but, as we
now show, gives only vanishingly small contribution
to E.
Dimensional considerations based on both physi-

cal and geometrical dimensions lead to the solution
|∆B| ∼ aµ0|∆J | (∼ denotes ”order of magnitude
equality”). Hence, taking into account (18) and (4),
we have

∣

∣

∣

∣

∆B

B

∣

∣

∣

∣

∼ aµ0
ǫ0µ0MΩV

µ0M
=

aΩV

c2
∼

V 2

c2
.

This correction is indeed very small for both labo-
ratory magnets and celestial bodies and so will be
neglected. The factors (1 − V 2/c2)1/2 which should
be included at certain places into our formulae are
left out of consideration for the same reason.

The Rigidly Fixed Contour

Let us assume now that the contour L is rigidly
fixed to the magnet (ω = Ω). If it did not rotate
the electromotive force in it would be given by the
formula

E =

∫

L

E · dl.

For a rotating contour an electromotive force induced
by the motion also contributes to E :

E =

∫

L

[

E + (V ×B)
]

· dl. (19)

When calculating the integral the contour must be
assumed fixed in our coordinate system since its mo-
tion is already taken into account by the second term
of the integrand1.
In (19) the electromotive force is a sum of an elec-

tric component Ee =

∫

L

E · dl and a magnetic (or

motional) component Em =

∫

L

(V × B) · dl. Since

the former is originated from the electric polarization
of the rotating magnet it is equal to the potential dif-
ference

Ee = ΦB − ΦA, (20)

which, for fixed endpoints, is independent of the form
of the contour.
But Em is contour independent as well since for a

closed contour
∮

(V ×B) · dl = 0. (21)

This is the consequence of the Stokes-theorem
∮

(V ×B) · dl =

∫

Σ

rot(V ×B) · n dΣ,

in which Σ is any surface bounded by the closed con-
tour and n is its normal vector. In Appendix 2 we
will prove that at any point of space (i.e. both inside
and outside the sphere) the equality

rot(V ×B) = 0 (22)
1This method of calculation is justified if the displacement

of the contour is negligible during the time interval the elec-

tromagnetic signal passes through it. Problems which we are

interested in do not require higher accuracy.
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holds from which (21) and the contour independence
of Em follow (for fixed endpoints).
Since both Ee and Em are contour independent

the same is true for the total electromotive force E
too, therefore, the contour in (19) may be chosen for
convenience. The best choice is to direct it entirely
within the magnet since, according to (3), along such
a contour the integrand of (19) vanishes. Hence we
conclude that in any linear contour which rotates to-
gether with the magnet and whose endpoints lie on
the surface no electromotive force is induced. As it
follows from Appendix 2 this conclusion remains valid
also for an axisymmetric conducting magnet of any
form, rotating around its symmetry axis.

The Unipolar Induction

When L rotates with respect to the magnet (ω 6=
Ω) the electromotive force in it consists of the same
kind of terms as in the corotating contour. For Ee
(15) remains valid. The potentials ΦA and ΦB can be
calculated from (15). In A and B we have ϑ = 0◦ and
90◦ respectively and in both cases r = a, therefore

Ee = ΦB − ΦA =
1

3
a2µ0MΩ. (23)

As we saw in the preceding section for a corotating
contour Em = −Ee. This electromotive force depends
on the velocity of the points of the contour in the
reference frame chosen and in the case of corotation
it is proportional to Ω. Then, for a contour, rotating
independently of the magnet, Em coincides with the
negative of (23) in which Ω is replaced by ω:

Em = −
1

3
a2µ0Mω. (24)

Therefore, the full electromotive force is given by the
equation

E =
1

3
a2µ0M(Ω− ω). (25)

Owing to the sliding contacts, L closes through the
magnet and since the latter’s conductivity is different
from zero a current will flow in L.
According to (25) electromotive force and current

arise even in a contour at rest (ω = 0). This phe-
nomenon known as the unipolar induction is rather

paradoxical since the current can explain neither by
the law of induction (since the magnetic field is con-
stant in time) nor as a motional induction (since the
contour is at rest). Unipolar induction originates
solely from the electric polarization of the magnet.
For a spherical magnet its magnitude can be calcu-
lated from (23) but the sphericity is, of course, not
essential for the phenomenon to occur. In a Faraday-
disk magnetized along its axis of rotation current will
be generated even in the absence of an external mag-
netic field.

As it is seen from (25) the electromotive force de-
pends on the relative rotation of the magnet and the
contour. This is quite an unexpected result since ro-
tation is absolute: A deformable sphere, rotating in
an inertial frame takes on the shape of an ellipsoid
of rotation. This deformation is the manifestation of
the absolute rotation since it exists irrespective of the
frame of reference from which the sphere is observed.

The role of rotation in electrodynamics is by no
means different. The electric polarization of the ro-
tating magnet is an objective (absolute) phenomenon
in the same sense as the deformation of a rotating
sphere since it demonstrates unequivocally that it is
the magnet — and not the contour — which is ro-
tating. Curiously enough, in the special case of the

electromotive force in L it is only the relative rotation
which counts. But this is so only when the magnet
conducts electricity. For a magnet made of insulator
relation (25) ceases to be valid and E turns out to de-
pend on the angular velocities separately rather than
on their difference. This question will be studied in
the next section.

The Rotating Dielectric Magnet

Assume now that our magnet does not conduct
electricity (γ = 0) but, instead, electrically polar-
izable (ǫ ≥ ǫ0). Then, under stationary conditions,
the l.h.s. of (1) is obviously equal to zero but since
now γ = 0 Eq. (3) does not follow from this fact.

The field E+(V ×B) which in a moving conductor
determines the current through the Ohm’s law makes
a dielectric polarized:

P = χǫ0
[

E + (V ×B)
]

= P
(1) + P

(2) (26)
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(χ is the dielectric susceptibility). In the above equa-

tion P
(1) = χǫ0E is the electrostatic while P

(2) =
χǫ0(V ×B) is the magnetically induced (or motional)
polarization.

This is, however, not yet the full polarization since
there is a third contribution

P
(3) = ǫ0µ0(V ×M) (27)

predicted by relativity theory, according to which el-
ementary magnetic dipoles m of a moving perma-
nent magnet acquire electric dipole moment equal to
ǫ0µ0(V ×m).

The origin of this phenomenon may be understood
directly from the equivalence of the inertial frames of
reference without resort to the apparatus of relativity
theory.

Consider an elementary magnetic dipole m which
is at rest in an inertial frame of reference and an el-
ementary linear conductor dl which is moving with
constant velocity v. The electromotive force dE in-
duced in this elementary conductor by its motion is
equal to dE = (v × B) · dl in which B is the field
of the dipole at the position of the conductor. The
absence of any absolute frame of reference requires
that when the conductor is at rest and the dipole is
moving with constant velocity −v the electromotive
force induced remain the same as before.

The magnetic field of the moving dipole at the fixed
position of dl varies in time and, therefore, it brings
about, through Maxwell-equations, an electric field
E which in turn produces an electromotive force E ·
dl. Simple calculation shows that, contrary to the
expectation, E · dl 6= dE . Equality is obtained only
if in E one takes into account the electric field of the
electric dipole moment ǫ0µ0

(

(−v)×m) acquired by
m due to its velocity −v.

The volume charge densities produced by all three
types of polarization are given by the equation

ρi = − divP (i) (i = 1, 2, 3). (28)

Through Gauss-theorem this formula determines the
surface charge densities as

σi = P (i)
r (r = a, i = 1, 2, 3). (29)

In words: The surface charge densities are given by
the normal component of the polarization vectors on
the inner side of the surface.
According to the first Maxwell-equation

div ǫ0E = ρ1 + ρ2 + ρ3.

If we introduce the induction vector by the formula

D = ǫ0E + P
(1)

the above equation takes on the form

divD = ρ2 + ρ3 (30)

and we arrive at a standard electrostatic problem:
Consider a sphere of constant dielectric permeabil-
ity ǫ. Calculate the electrostatic potential for given
volume and surface charge densities (ρ2 + ρ3) and
(σ2 + σ3).
Eq. (4) and the relation χǫ0 = (ǫ − ǫ0) permit us

to write

P
(2) + P

(3) =
1

3
(2ǫ+ ǫ0)(V × µ0M )

which in turn leads through (6) to

ρ2 + ρ3 = − div(P (2) + P
(3)) =

= −
2

3
(2ǫ+ ǫ0)µ0MΩ.

(31)

This expression will be substituted into the r.h.s. of
(30).
Similarly, we obtain for the surface density the

equation

σ2 + σ3 = P (2)
r + P (3)

r =
1

3
(2ǫ+ ǫ0)(V × µ0M)r.

Using (5), the relation (r ·M) = rM cosϑ and Ωr =
Ωcosϑ we have

σ2 + σ3 =
1

3
(2ǫ+ ǫ0)aµ0MΩ sin2 ϑ. (32)

We write in (30) D = ǫE and through E = −∇Φ
introduce the potential Φ again. Then

△Φ =







−
1

ǫ
(ρ2 + ρ3) (r < a)

0 (r > a).
(33)
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The boundary condition for D is fixed by the surface
densities as

D+
r −D−

r = σ2 + σ3,

in which D
+ and D

− are the inductions on the outer
and inner sides of the surface. This condition ex-
pressed through the potential becomes

−ǫ0
∂Φ+

∂r
+ ǫ

∂Φ−

∂r
= σ2 + σ3 (r = a) (34)

(Φ+ and Φ− are the potentials outside and inside the
sphere).
Eq. (33) will be solved in Appendix 3 with the

result

Φ =−
2ǫ+ ǫ0

9(2ǫ+ 3ǫ0)
µ0MΩ (3 cos2 ϑ− 1)×

×











r2 (r < a)

a5

r3
(r > a),

(35)

From this we obtain for the electric part of the elec-
tromotive force E the expression

Ee = ΦB − ΦA =
2ǫ+ ǫ0

3(2ǫ+ 3ǫ0)
a2µ0MΩ. (36)

The magnetic part is still given by (24). Hence,
the full electromotive force is given as

E =
1

3
a2µ0M

(

2ǫ+ ǫ0
2ǫ+ 3ǫ0

Ω− ω

)

. (37)

As we have already mentioned in this case it is not

the relative rotation which determines E . In spite of
the existence of this electromotive force no stationary
current will flow through L since the magnet’s con-
ductivity is zero but the potential difference between
the points A and B may be observed.
Since conductors are ”infinitely easily” polarizable

substances (37) must be reduced in the limit ǫ −→ ∞
to (25) which is indeed the case.
The numerator of (36) can be written in the form

[

2(ǫ − ǫ0) + 3ǫ0
]

in which the term 3ǫ0 derives from

P
(3). Since this term does not contain ǫ it drops out

of the limit ǫ −→ ∞. Does this mean that the ele-
mentary magnets in a conducting permanent magnet
do not acquire electric dipole moment due to their
motion?
Of course, not. According to (3), in a con-

ducting magnet the rotation determines the electric
field directly, independently of whether the latter is
produced by polarization charges or motion-induced
electric dipole moments. In a dielectric magnet, on
the contrary, it is the polarization rather than the
field itself which is fixed by the rotation and so in
this case it is crucial to take into account all possible
types of polarizations.
When the magnet is neither conducting (γ = 0)

nor polarizable (ǫ = ǫ0) the electromotive force in L
is still different from zero:

E =
1

3
A2µ0M

(

3

5
Ω− ω

)

.

This electromotive force originates solely from P
(3).

The Tethered Satellite

In march of 1996 a spherical 1.6-meter diameter
satellite was released out into space from the payload
bay of Space Shuttle Columbia during its orbiting at
a height about 90 km above the Earth. Its tether, a
long conducting cable, served (among others) to gen-
erate electric power due to the electromotive force Em
induced in it by the Erth’s magnetic field. Free elec-
trons in the thin ionosphere where the Space Shuttle
operated were attracted to the satellite. The elec-
trons travelled along the tether to the orbiter. The
electric circuit was closed by means of an electron
generator on the orbiter which returned charged par-
ticles back into the ionosphere.
The electromotive force Em is the greater the longer

the tether is. The latter was a 21-kilometer-long leash
but it broke when the satellite was extended 19.7 kilo-
meters. The experiment, however, could not be con-
sidered as a failure. Up to the time of the severing
of the tether, the orbiter-tether-satellite system had
been generating 3,500 volts and up to 0.5 amps of
current.
Considerations of the preceding sections suggest

that, since the Earth rotates in its own magnetic
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field, it must be electrically polarized and the elec-
tric field of the polarization charges must give rise
to an electromotive force Ee in the tether which also
contributes to the current in it. To have an order
of magnitude estimate we assume that (1) the Earth
core is a homogeneous permanent magnet of nonzero
conductivity γ, (2) the rotational and magnetic axes
of the Earth coincide and (3) the mantle’s and the
atmosphere’s polarizabilities are negligible. Neither
of these assumptions is correct but, perhaps, they
provide an acceptable starting point.
Consider a tethered orbiter-satellite system, orbit-

ing above the Equator (xy plane) on a circular orbit
of radius r. Assume further that the tether, a lin-
ear conductor of length ∆l ≪ r is oriented along the
radius and the positive direction on it points toward
the increase of r. Then

∆Em = (v ×B)r ∆l.

v is the orbiting velocity with respect to the (prac-
tically inertial) frame of reference with its origin in
the center of the Earth and orientation defined by
the fixed starts. The magnitude of v is equal to ωr
where ω is the angular velocity of the orbiter. In the
orbital plane the Earth’s magnetic field B has only
z-component equal to

+
1

3
µ0M

(ac
r

)3

where ac is the radius of the Earth core. Hence

∆Em = +
1

3
µ0Mω

a3c
r2

∆l.

This positive ∆Em gives rise to an electron current
directed toward the Earth and, therefore, the satellite
has to be orbiting above the shuttle.
On the other hand,

∆Ee = Er ∆l = −
∂Φ

∂r
∆l.

The r.h.s. is to be calculated at ϑ = 90◦. According
to (15)

∆Ee =
1

3
µ0MΩ

a5c
r4

∆l,

therefore,
∣

∣

∣

∣

∆Ee
∆Em

∣

∣

∣

∣

=
(ac
r

)2 Ω

ω

where Ω is the angular velocity of the Earth’s rota-
tion. Since ac/r ≈ 1/2 and Ω/ω ≈ 1/20, ∆Ee is less
than ∆Em only by about two orders of magnitude.2

Moreover, if the orbital plane is perpendicular to the
Equator (i.e. it goes through the Poles and is, of
course, at rest with respect to the fixed stars) then,
since v ×B is perpendicular to the radial direction,
∆Em = 0 and it is ∆Ee alone which contributes to the
electric current in the tether. Though polarizability
of the ionospher may substantially alter (or even in-
validate) this conclusion the possibility of the electric
polarization of the Earth seems worth of further con-
sideration.

Appendix 1

We are looking for the solution of the equation (13)
at a > r which tends to zero faster than 1/r (the total
charge of the sphere is zero) and the tangential com-
ponent of the electric field on the outer side of the
surface r = a coincides with the tangential compo-
nent of the field (3) inside the sphere. Owing to the
surface charges which compensate the volume charge
the normal component of E will be discontinuous at
r = a.
Axial symmetry requires Eϕ to vanish and so the

tangential component is given by

Eϑ = −
1

a

∂Φ

∂ϑ

∣

∣

∣

∣

a

alone. According to (3) it is equal to

Eϑ = −(V ×B)ϑ = −VϕBr + VrBϕ.

Both factors of the second term are equal to zero
while in the first term

Vϕ = Ωr sinϑ, Br =
2

3
µ0M cosϑ.

2Since charged particles move much faster than the tethered

system, the effect of the Coulomb-force due to the Earth’s

polarization for them is negligible with respect to the Lorentz-

force.
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Hence

1

a

∂Φ

∂ϑ

∣

∣

∣

∣

a

=
2

3
µ0MΩa sinϑ cosϑ. (38)

The axisymmetric solution of (13) which obeys all the
requirements formulated is given by the equation

Φ(r, ϑ) =
A

r3
P2(cosϑ) =

A

2r3
(3 cos2 ϑ−1) (r ≥ a).

(39)
P2(cosϑ) is the 2-nd Legendre-polynomial, A is a con-
stant which is fixed by (38) as

A = −
2

9
a5µ0MΩ

Substituting this into (39) we obtain (15).

Appendix 2

In the textbook formula

rot(V ×B) = (B·∇)V −(V ·∇)B+V divB−B divV

the last two terms vanish as a consequence of divB =
0 and divV = 0. In Cartesian-coordinates ∇ =
(∂x, ∂y, ∂z) and we have

rotj(V ×B) = Bi∂iVj − Vi∂iBj (40)

where summation convention over repeated indices is
understood (e.g. Bi∂i = Bx∂x +By∂y +Bz∂z).
Consider now Eq. (2) . For the components in

Cartesian coordinates we have the formula (Ω×r)i =
ǫijkΩjxk in which (x1, x2, x3) ≡ (x, y, z), and ǫijk
is the fully antisymmetric unit tensor (ǫ-symbol)3.
Using this in (40), we have

rotj(V ×B) = ǫjklBi∂i(Ωkxl)− ǫiklΩkxl∂iBj .

Since the current desity is zero throughout, B is
rotation-free and ∂iBj = ∂jBi. Hence

rotj(V ×B) = ǫjklBi∂i(Ωkxl)− ǫiklΩkxl∂jBi.

3ǫijk = +1 or − 1 depending on whether ijk is an even or

odd permutation of 123. If some of the indices ijk coincide the

value of the symbol is zero.

In the first term

∂i(Ωkxl) = Ωk
∂xl

∂xi
= Ωδil

which is equal to Ωk at i = l and vanishes at i 6= l,
therefore

rotj(V ×B) = ǫjkiBiΩk − ǫiklΩkxl∂jBi.

In the second term we perform a transformation of
the opposite sense: xl∂jBi = ∂j(xlBi)− δljBi. If we
substitute this into the previous formula and use the
constancy of Ωk and the ǫ-symbol we obtain

rotj(V ×B) = −∂j(ǫiklBiΩkxl) + (ǫjki + ǫikj)BiΩk.

The sum of the ǫ-symbols is zero and under the sign
of partial derivation we recognize the mixed product
of the vectors B,Ω and r:

rotj(V ×B) = −∂j
[

B · (Ω× r)
]

.

The mixed product of three vectors is equal to the de-
terminant formed from their Cartesian-components.
Since the magnet is assumed axisymmetric the vec-
tor B at the point r lies in the plane defined by Ω
(i.e. the z-axis) and the direction of r. Hence the
determinant vanishes and the field (V ×B) is indeed
rotationless. Our proof of this fact is obviously valid
for any axisymmetric magnet which rotates around
its symmetry axis.

Appendix 3

We are seeking the solution of (34) which is every-
where finite and continuous (even at r = a). (32)
suggests the expected ϑ dependence of the solution:

Φ− = Ar2P2(cosϑ) + f(r) =
A

2
r2(3 cos2 ϑ− 1) + f(r)

Φ+ =
B

r3
P2(cosϑ) =

B

2r3
(3 cos2 ϑ− 1)

in which A and B are constants and f(r) is a partic-
ular solution of

△f =
1

r2
d

dr

(

r2
df

dr

)

= −
1

ǫ
(ρ2 + ρ3) (41)
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which will be chosen to vanish at r = a:

f(r) =
ρ2 + ρ3

6ǫ
(a2 − r2).

Continuity requires B = Aa5, hence

Φ− =
A

2
r2(3 cos2 ϑ− 1) +

ρ2 + ρ3
6ǫ

(a2 − r2)

Φ+ =
a5A

2r3
(3 cos2 ϑ− 1).

Using (32), the r.h.s. of (34) may be written in the
form

σ2 + σ3 =
1

9
(2ǫ+ ǫ0)aµ0MΩ[2− (3 cos2 ϑ− 1)].

Then (34) becomes

ǫ0 ·
3

2
aA(3 cos2 ϑ− 1) + ǫaA(3 cos2 ϑ− 1)−

1

3
(ρ2 + ρ3)a =

=
1

9
(2ǫ+ ǫ0)aµ0MΩ[2− (3 cos2 ϑ− 1)]

(42)
As it follows from (31) the terms which do not con-
tain (3 cos2 ϑ− 1) cancel and the remaining equation
determines the value of A:

A = −
2

9
·
2ǫ+ ǫ0
2ǫ+ 3ǫ0

µ0MΩ.

From this (35) follows. The cancellation of the terms
which do not contain P2(cosϑ) is the consequence of
the fact that, according to (28) and (29), the volume
and surface charges compensate to zero separately for
all three types of polarization charges.


