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The interaction problems of wave fields with resilient bounded bodies arise
in the different fields of mechanics, hydro acoustics, geophysics and seismology.

The analytical solutions of the problems of hydro acoustic waves scattering
by resilient bodies are directly connected with the methods development of mod-
eling wave fields interaction processes with underwater objects. Increasing the
complexity of underwater objects geometry we get the increase of mathematical
complexity of the pressure field determination problem solution. In this con-
nection the problems are solved with simplified mathematical statement, which
analysis helps to indicate the significant features of geometry and structure of
modeling object. Up till now number of analytical and experimental researches
were implemented according to the statement of the problem. These researches
were directed to the conformities determination of influence of any construction
or technologic property on structure parameters of reflected signals.

The problems of scattering of acoustic pressure waves by resilient bodies
with complex geometry have no analytical solution.

Applying the direct numerical methods (e.g. finite difference method) to
solve partial differential equations of these problems is not expedient even using
powerful computers due to multi-dimensional type of the problem. For this
reason high-frequency and low-frequency methods are often used to solve such
problems. But when wavelength is comparable by order with the characteristic
size of disperse body the frequency lies in moderate range. Exactly this range
as shown in [I6] is highly informational.

To solve the scattering problems in the moderate frequency range the limited
integral equations method is applied.

Applying Grin theorem let us reduce the solution of stationary problem of
resilient body dispersion to the solution of combined singular equations for the
system of potential displacements. The solution of the above determines the
surface potentials, which are used to define the outside field. Thus, the num-
ber of dimension variables is reduced and it becomes possible to use numerical
methods.
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In works [I7, [T] the problem of sound diffraction on the finite cylinder with
mixed boundary conditions is solved by Grin’s function method. In [I8] the
axis-symmetrical dispersed pressure of resilient disk is computed using finite
element method and HelmHoltz integral equation.

As is well known, there is a tight relation between the solution of scattering
and emission problems. It could be defined by reciprocity theorem [I9]. This re-
lation could be used to transfer emission problem results to scattering problems
and vise versa [20].

While solving complex problems, for example three-dimensional problems of
acoustic waves scattering on the resilient bodies or two-dimensional problems of
scattering on the piece-wise-smooth resilient bodies and problems of scattering
of acoustic waves on the thin-wall covers, troubles with definite satisfaction of
the appropriate boundary conditions arise.

The considered work is devoted to the research of scattered and emissed
acoustic waves by finite cylindrical covers, resilient cylinders and round plates.

The presence of ribs fracture line in bottoms interface and cylindrical covers
on the face of resilient cylinder and on edge of round plates inputs the additional
troubles of evaluating of such problems.

During last years for the solution of space problems of scattering of acoustic
waves numerical and integral equations methods are effectively applied. De-
spite the achieved researches of applying these methods to three-dimensional
problems, questions of efficiency increase of existing methods and their PC-
realization are still actual. In particular, one of the hydro-acoustic problems is
the evaluation of scattered and emitted pressure field by three-dimensional bod-
ies of cylindrical form. But during the scattered pressure field exploration near
bounded disperser with edges and also internal features of dissipater troubles
arise, which are hardly solved without analytical research. That is why the im-
portant problem of analytic-numerical methods development and development
of software for acoustic space interaction with finite bodies of cylindrical form
are actual.

During the solution of problems of emission and scattering of acoustic waves
by bounded bodies of cylindrical form we use the strategy based on applying
of bounded integral equations method combined with series method and later
using the improvement of convergence method, which consider particularities
of desired functions. The proposed strategy is authorized by the fact that the
series method is effective to solution of equations of resiliency theory, thin covers
and plates, and the bounded integral equations method is effective to research of
infinite acoustic environment vibrations. Using this methodology let us describe
the behavior of bounded resilient bodies near salient line, explore the pressure
field in near and far zone, obtain the solution of the problem with defined
precision in wide frequency range.

In the first chapter basic linear equations of motion and initial relations are
considered, statement and solution of problem of scattering of flat acoustic wave
by finite cylindrical cover bounded at the ends by resilient bottoms is done.

The improvement of convergence of obtained infinite systems of linear alge-
braic equations was held, using asymptotic properties of Fourier decomposition



coeflicients of the desired functions while solving the equations of cover theory.

The solutions of the problem of scattering of flat pressure wave by open-end
free cylindrical cover, and also by tension cylindrical cover with defined inner
tensions. In case of thin resilient cylindrical cover and round plates its motion
is modeled by the linear Thimoshenko model.

Today the problem of learning of dynamical processes of acoustic fields inter-
action with thin-walled structures in liquids is of great interest. The theoretical
exploration of these processes is strongly associated with building of effective
analytic-numerical methods of mathematical physics equation solving, which
are realized on today’s PC. For example, while analyzing wave diffraction on
solid bodies and covers of revolution with fixed ends in [21] finite-element and
spline-functions methods based on function approximation theory were applied.

We assume that scattering objects could easily move in boundless liquid
environment or to be deformless.

In this work we propose the analytical method of dynamical problems solu-
tion of fixed oscillation of infinite acoustic environment interacted with resilient
finite cylindrical bodies.

In the nowadays technics problems of oscillation of finite cylindrical covers,
filled with liquid, their sound waves emission at vibration in infinite acoustic
environment are actual.

While interaction of wave fields with resilient bounded bodies problems arise
in different fields of technics, medicine, hydro-acoustics and geo-physics.

The analytical solutions of problems of scattering of acoustic waves by
resilient bodies are directly related with developing methods of modelling of
interaction processes of wave fields with underwater objects.

Let in the infinite ideal compressible rigid media the cylindrical cover of
finite length bounded at the ends by bottoms is placed. Cover is filled with
ideal compressible fluid inside with density py and sound velocity cg.

The considered cover is referred to cylindrical system of coordinates ', 2", ©
where axis 0z’ is aligned with axis of cylindrical cover and plane z/ = 0 is
equidistant to ends (see Fig. 1). Flat harmonic in time pressure wave falls to
the cover (see Fig. 1):

P (r,z,0,7) = Pyexp (—iw (rcos Osinp™ + zcosp™ — 7)) (1)
In formula (@) and below following symbolism is used: r = }g—;;z = f%—; are
nondimentional coordinates, 7 = %;w = % are nondimentional time and

angular frequency, c is sound velocity in the dissipating body environment,
Ry is radius of middle surface of cylindrical cover, ¢,{2 are time and angular
frequency, ¢* is angle between wave direction and axis of the cylindrical cover,
P, is constant with the dimension of pressure. Time factor exp (iwT) is omitted
below.
The problem of definition of dissipated pressure field outside the cover P (r, z, ©)
—

and in filler P° (r, z, ©) and components of cover movement vector U and plates

N
W is reduced to solution of system of differential equations.
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Fig. 1

Dissipated acoustic pressure P€ (r, z,0) in unbounded acoustic medium is
described by wave equation [I]

(A+w*) P (r,2,0) =0 (2)

where A is three-dimensional Laplace operator.
Dissipated pressure in fluid which fills the cover P (r, z, ©) satisfies the wave
equation [2]

<A + ?—;) P (r,2,0) =0 (3)

where 33 = Z—z
0
The dynamics of thin resilient cylindrical cover is described by linear equa-

tion of Timoshenko cover theory which takes into account rotary inertia and
deformation of transversed shift [2]

Lijuj = g10i3; (Lij = Lyji;i,5 = 1,2,3,4,5) (4)

where d;; is the Cronicler’s symbol,
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FE1,vp1, p1,h1 is Young’s modulus, Poisson’s ratio, density and thickness of
cover material, p is density of outside liquid medium, Us, U are turning angle of
normal of cover’s middle surface in planes r© and rz appropriately; g, is radial
component of outside force falls on middle surface area unit.

Differential equations of Timoshenko-Mindlin which describe the transverse
motion of round resilient plates with shifted and rotary inertia taken into ac-
count and characterizing few first asymmetrical thickness mod oscillations have
the following form [3]

(Ag + ale — 042) (7‘ 6‘) ( — Oéle) (5)
(Ao +k3) @ (r,0)=0 (6)
where
Ay = P10 1 mP(S+D)
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g. - normal component of outside force, which falls falls on middle surface
area unit; Fo, g2, Ga, p2, he is Young’s modulus, Poisson’s ratio, shift ratio,
density and plate thickness appropriately, Ko is numerical shift coefficient; ®
is auxiliary function; Cag is velocity of transversed waves in plate.

Let us define the radial and tangent components of motion vector of plates
W,., We which characterize the flat stress state as follows [2] €]

dp 10V 10p 0OV

W,=—4+-——Wog=-— — —; 7

or "ror’ T v o0 or (™

Here the scalar potential ¢ and non-zero component of vector potential ¢ satisfy
the wave equations
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The solution of differential equations [{)- () must satisfy the following boundary
conditions [2, B
a) continuity translation on middle cover surface and plates

0
{E (P + Pe)} = pw?c*usz; g, = [-P* — P° + Pl (9)
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b) continuity translation in junction place of cover and plates

[us] .oy = Wilooys usly = W] 25 fual ooy = Wl 5 (10)



¢) continuity of turning angle (r = 1,z = +I)
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e) continuity of moments (r =1,z =1)
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Taking into account the symmetry relative to plane ©® = 0 we find the
solution of equations (@)-(®) in the Fourier series form:

uy (2,0) = Z Z (ui,,, cos Buz + uy,,, sin B, z) sin nb;

n=0r=0

ug (2,0) = Z Z (u3,,, cos Buz + us,, sin B, z) sin nb;

n=0r=0

oo o0
us (z,0) = Z Z (u3,,,, cos Buz + ug,,, sin B, z) cos nb;

n=0rv=0

oo o0
ug (2,0) = Z Z (u,, sin B,z + ug,, cos B, z) cos nb;

n=0rv=0



= Z Z (ug,, sin B,z + ug,,, cos B,z) cosnd (14)

n=0v=0
= i W, (r) cos nf; W, ( in ) cos nb;

Z ©n (1) cosnd; ¥ (r,0) Z U, (r) sinnb

oo

Wan, (1, 0) ZW9 n (r) sinnd; @ (r, 0) Z@n ) sinnf

Pe(r,z,0) = Z P& (r, z) cosnb; P° (r,2,0) = Z P? (r,2) cosnd
n=0 n=0
where I
VT
v =l =5
p l Ry

In relations ([[d]) ”+” is the symmetric and ”-” is the non-symmetric components
of general problem solution.

Let us exemplify the solution of wave equation (@) which satisfies the Zom-
merfield’s condition in the form of Helmholtz-Huygens integral [6]

oG  0OP¢
P (r,z,0) :/ <Pe oo (9n ~ oo G> dog (15)

where dog is element of dissipating surface area oy;

G = (47R*) " exp (—iwR*) is the fundamental solution of Helmholtz equa-
tion; R*2 = r2 4+ 12 — 2rrgcos (O — ©g) + (2 — z)” is the distance between
point of observation (r,z,0) and point (rg,z0,00) on the surface op; 8%0 is
the derivative with respect to outside normal of surface oy in point (r,z,0);
Pe (rg, 20, ©p) is the value of dissipated pressure on surface oyg.

Let us arrange the defined representation of function G in cylindrical coor-
dinates [6] with divided coordinate z

1 0o 67%\z7z0|

G=1 mz::oem cos [m (6 — 6y)] /Ooo M (Aro) Jon (A1) ————dA (16)

where ae:{ Z\;\j;iwjé i i\) i(; , Jm () is Bessel’s function of the first kind;
go=Llie;, =2;m > 1.

Let us assume on the surface of closed cylindrical cover the distributed pres-
sure P°(rg,z0,00) and its formal derivatives are presented in the following
form:



a) by Fourier’s series on the side surface of cylinder

(20,60) = Z Z fitecos Bz + f,F sin ﬂl,zo) cosnf (17)

n=0r=0

9 frve :
8—Pe z0,00) = Z Z Fecos Byzo + £ ¢sin Byzo) cos nf

n=0vr=0

b) by Fourier-Bessel’s series on plates ends zg = £

P¢(20,6p) = ZZgEiJ YjnT0) cOs Nl

n=0v=0

9 be

8_P (20,00) = ZZg JIn (YjnT0) cosnby (18)
n=0v=0

where ~v;,, is the zeroes of Bessel’s function derivative (J), (6,,) = 0)
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Let us write the distributed pressure P¢ as the sum of symmetrical and
antisymmetric components relative to z =0

P (r,z,0) = P°" (r,2,0) + P~ (r,2,0)

Substituting the expansions (@), (I7), (@) into [[H) and integrating using (Il
we get the following expressions for the distributed pressure to region

a)symmetrical component
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where g = 156, =2;n > 1.

For the region (r > 0, |z] > 1,0 < © < 27) expression for P (r, z) and P¢~ (
will look
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+ when z > [
- when z < —1.

Functions PS* (r, z) and P* (rg, z9) and introduced in series (I7)-([X) un-
known coefficients feu,gnj and functions PS* (rg,z) are tied by relations
[7 o, ()]
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1 l
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+ b et 2
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0
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Substituting the expression ([[@),20) into [23)) we get algebraic equations
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Oy is the Kronecker’s symbol.

Let us consider a question of derivatives representation from series ([[d]) also
by Fourier and Fourier-Bessel series, as during the solution of equations (B)- (&)
we need to differentiate it.

Let us assume that even function f (z) and odd function ¢ (z) and its deriva-
tives could be expanded into Fourier series in [, 1] :

@R (2 Z a2k cos B,z; %) (2) = Z b2k sin B, 2;
= v=1
f(2k+l) Za%H sin 8, z; gp (2k—1) (z) = Z blz,k_1 cos B, z. (25)
v=0 v=1
Coefficients a8 a2K =1 p2E p2K-1 are defined by formulas [10, [T [T2]

l !
= %’/ @) () cos By zdz; b?F = %’/ 0 () sin B, zdz
-1 -1

1 l
a2kl = %”/ FERD (2)sin B, zdz; 21 = %’j/ e*=1 (2) cos B, zdz (26)
—1 -l

Integrating (28 by parts and taking into account the evenness and oddness of
derivatives from f (z) and ¢ (z) we find that

2¢e - . _
2k _ 2V _1\itr+l 02i-2 p(2k—2i+1) _1\k g2k 0] .
e (G R (1) + (-1)* B2*a] ;

B = T3 [P R ) - (1) ) (e
a2k+1 — ﬂ 2k, b2k: ﬂ b2k—l,

During the solution of equations (@) we present the function P? (r, z) as the

series
oo

> (P2 (r) cos Bz + P, (r)sin B,z] = PY (r, 2) (28)

v=0

12



The second derivative from P? (r, z) taking into account @), [E7) we write

as
0? = /0 2, (—1)”
FaPr ) =3 (&Pffr (19 oot 22— 52025 (1)) oo
- Z ( 2O R pi 1) Lt —32P5 () ) sine (29)

Let the dissipated pressure and its derivatives on the interior side of the
plates are defined as follows

8
Po% (1) ng (VjnT) ; P"i (r,1) ZgZOiJ VjnT) (30)

Taking into account ([8)-(B0) wave equation (@) for the symmetrical and anti-
symmetric components obtains the following form

9 10 n2 . — 2¢, (-1)" ,,
[W e < [ "ﬂ P () == (f)gnﬂn (Yinr)s (31)
j=0

2 10 (n? o 26, (=1)” -
{W+;E—<T—2—%2)]P (r) = ngnj']n(ﬁ)/jn’r)v

J=0

where @3 = e ﬂ2 ;

General solutions of B are

P;L)EL( ) O+J %27“ chuggno+J ’7]717"); (32)

P;l);( ) fnuJ < +Z nv;gng (WJ"T)
7=0

where 5
ot _ 2e, (—1) o 28, (—1)"
nvj l 2 A2\ Tnvy T l 2 _ A2
(%2 /an) (%2 ’an)
From (B2) we obtain that pressure PF (r) and £ PJ* (r) on the interior

surface of cylindrical cover (z = 1) are

0

5P () = S Ga) gy (e). (33)

P;L)Ij_ (1) chuggno+J 7]71)

13



Pf(zjv_ (1) = %2 + Z nv;gnj ’7]71)

Let us exemplify P%F from () by Fourier-Bessel’s series and equate it to
coefficients [B0). We get

o— - o (_1)U %2’]7‘1 (%2) Jn (/Yn) En %0 =
g"j = Z ":’L 2 _ .2 . E— gnj+ ( ) CrerVu; (34)
v=0 ’Yj" 2 v=0
*0— - o (_1)U %2’]7‘7, (%2) Jn (/Yn) En o > _
g"j - Z f"j— o 2 : E— gn;r ( ) Onv,u (35)
gn 2 v=0

Let us represent the falling pressure P? (r, z, ©) and ints normal derivatives
on the surface of a cover and plates a the series analogical to ([d), ([[J), ([Td):

P (r,z,0) = Z PS¢ (r, z) cos nb;
n=0

Pl (1,z2) = Z( ohcosByz+ [ sinByz); POE= (1) Zgn]iJ (VjnT) ;
v=0 7=0
6 a - *a ]
EPn (r,2) |p=1= ;0( teosByz + frl” sinB,z); (36)
) S ra
S P D) [emy= Y (0057 £ 9257) Jn (jnr) s

Jj=0

Let us present the flat wave ({l) as the expansion [6] [15]
P*(r,z,0) PQZEn T T (wsin *r) exp (—iwz cos ™) cos nb;

and integrating using formulas that define the correspondent series components
B8) we obtain

—1)" 2,57 " J,, (wsin ©*) w cos ©*
= _( ) n;2 — ngczo:;lz*)w Ld sin (wl cos ™) ;
17

2(=1)" e,i"J,, (wsin ©*) By
o — (=1) end (wsin ™) 8 sin (wl cos ™) ;
B2 — w? cos? p*

nv

EnjEnt "wsin o*J), (wsing®) Jp, (Vin)

* .
SRR cos (wl cos ™) ;
Vi, — w?sin® ¢

a— _ __
Gnv =

at  Ent "enj (wsing®) Jy, (vin)

gl = 2 — sin (wl cos ™) ;
V5, — w?sin® p*

14



2cos* (=1)"w
B2 — w? cos? p*

26, . .
ﬂzwz—w sin (Wl COs @ ) ]

L —

frat = —g, i "wsin p* J), (wsin ¢*) sin (wl cos ™) ;

fra= = gpi "wsine® J), (wsin p™)

*a+ __ - * _a+,  xa— __ * _a—
Gny = WCOSQ gnj y9ny = W COS @ gnj'

To find the solution of inhomogeneous equation ([H) we define the auxiliary
function g
FE = AJWH + —gF; (37)
Do
Taking into account () to define F* (r,©) from () we get the following
differential equation:

(A2 — a0 — a2) F* (1,0) = (8 — B5) g (r,2); (39)

where

S

* * * S *
61 = 0y +041D_2562 = 042D_2§

gif (r,2) = Z Z (g?j + gfj — gfj) JIn (YjnT) cos nb;

n=0 j=0

The solution of equation [BY) we write as follows:

FE(r,0) = Z F* (1) cosnf
n=0

Fﬁt (r) = Alin‘]n (mr) + A2in*]n (ver) + Z AznjgznjJIn (VjnT) (39)
=0

\/alzt a? +4das - TFYJQn_ﬂik

T1,2 = ; j — ~ 24 D) )
Vin — @175, — Q2

+ + + .+

Domi = Inj T 9nj T 905

A, AZ, are unknown coefficients.

Using B9) and @7) to the normal shifts of the plates we obtain

S
AE T AL g > (Asnj — p;
Wi (r) = Do 1) | Aoy Car) +z( 5) s () - (10)

_ A2 A2 _ A2 gznj
7 V32 =0 Vin

The solution of equations {@)-@) will be rewritten as follows:

OE (r) = % J, (kar); (41)
o= (r) = Y, Jn (kar) (42)

15



Wiy (r) = Wi, Ju (ker) (43)

Substituting expansions () into equation @) taking into account (2H), (1)
we get the algebraic equations relatively to components of shift vector compo-
nents:

azij“"jv = b + 039 0 = alyi i =1,2,3,4,5. (44)

ij jir b

where )

aty = (1+a®) (-0 =015} + ) — o 5; - ;—3;
2
ai, = a® (n2_0165+%f) 2}2,@13 (1+a)(1—|—%f) (+n);

2
+ _ - Nt . 2 2 2 2 W 2.
ary = Byo2 (+n),a15—0,a22—a (—n _Ulﬁu_%l‘f‘—Q) — 5

B
2i = [(1 +a ) %f + a2] (:I:n);a2i4 = O;aéﬁ5 = a202ﬁ12, (£n);

2
w _
az; = vo1Buiazy = (1 +a%) (1+ sn?) + 5362 — F;agﬁ = Byt
+ 2 2 2 W’y 2 2 w?
a44=—(1+a)01n - B; +ﬂ2,a45 a (n o1 — B+ );

32
. 2
2 2
a55—a<n01 B, + ﬁ2>
b+*C+u + Chubt + Ot b+*Cu + Chubh Cu
1In — in 12%2n 14 4n7 21%1n 22 2n 25 5n’
+
b3, = Cizust, + Cayug, + Csug, + g/,5 b5, = Clyug, + Cisud;
+
bi, = Csyui, + Cizud, ; by, = Cryug, + Cl2u2n + Oyt
by = Coug, + Cootg, + Cosus,,; by, = Cagig, + Grpys

by = Criug, + Cizus, + Coyuly, + Cpts,s Gy = frw + it

TLI/?

by, = Coatia, + Cszug,, + Copuly, + Crzus,; Cff = _Ulw;
¢t = —aor 2 o — 2 U o oy
Cf, = —ad*oy 2y (l_l)y;CSE = aQUan” (l—l)'/ Ciy = 53 2200 (71) (l—l)”;
et — o 22 o ot ﬁy2su(—1)y Ci g2, 2 V"

I I

. 2(-1)"B, - 2(-1)" B, _
C54 = C5+5 + OZL5§011 =o———;Cp = Cﬁf; Cy = Chy;

l
( ) BV 2 _1)V Bu

_ _ ( _ o _ _
Cs3 = _%1 I ;Cs3 = —02h I i Cpy = U3 Csy = Cg5 = Cls;

16



Csy = a°Cyy; CFy = £055;
From (@) we define U= as:

jnv

N AT I o N e o S P S
u =L u + L2nuu2n + LSnvuL’m +L Ugn +L Usy, + LGnygnrw

njv Inv™1ln 4nv Snv

U = Dy + Ly iy + Lo s, + Lty + L, + L 0 = (1—5
45
where
: 1 : 1
L3, = AT (CHLAT, + CHLAS) s Ly, = AF (CHAT, + CHAT);
5 5
. 1 _ AT
+ _ T E T
Lénu - A_;r (CSBA?;j) ’L%nu - A—;ra
- 1
+
L)k = AT (CHAL + CHLAL + CY AT, + CFLAT) 5
- 1
+
L = AT (CHs AL + CHAL + Ch AT, + CH AT 5
. 1 o o -
L, = A (c 1A +Cxiy +C 41A2j) ;
5
. 1 o o o
Ly, = A—g (c 1247, + CAs +C 52A5j) ;
. 1 o - -
L3, = A (c 33ds; + O Ay, +C 53A5j) ;
5
. 1 o o - 1 o o
Ly = A (c 1Ay + 054A5j) s Ly = Ao (c A+ 055A5j) ;
5 5

. A
L = —A‘Qf [ AF =det |af] i, 5 = (1,2,3,4,5);
5

Aa[j are algebraic adjuncts of elements alij.

To improve the convergence of the obtained solution ([@H) we use the asymp-
totic properties of expansion coefficients of Fourier series of the desired functions.
Basing on ([Z5), 1) we could define the following relations to the even functions
f(2) and odd functions ¢ (z) and its derivatives represented as Fourier series
on [-1,1],

a) for even function f (2)

N > v | " v
f(z)= qu cos Bz + Z 2y (l_l) {f () - a0 + 0 cos B, 2;
v=0

e B BB
(46)

17



) N Y 00 1\ m v
9%f (2) -y {_ﬂyfﬁ 2e0 (Z1)" (z)} cos Bty 2 (l 2, [f O _1 (Z)]cosmz

022 — l N By BS
84 al 2e, (-1 ! | mn
iU > it + ZAE @ ) - )] cos s
o 25, D)0 O 9'f(z)
vy 2D L0 o= 22
v=N+1
63 65 a7
= EE = HE e - T
etc.
b) for odd function
N
= Z‘Pu sin 3, z;
v=0
N v 0 v " v
- Z_:l[ﬁ“ e Ul M ] s
v= v=N+1
(47)
RE al —1)”
To =% ot - 25 (o - o )| conpa
v=1
= 2(=1)" [V (l Vil
+ Z (l ) [@ﬂé)_@ﬂ;)]cosﬁua (;pg)lz:l:@”(l);
v=N+1
S )
Ta =3 e+ 2 (0t 1) - @) conpies
= 2(=1D)Y [V V(1 o 0°
+ Y 2P Vﬁﬁ() _wﬂ,%()}“’sﬁ”“ F = ) e L= ),
v=N+1
Let us introduce the symbolism
‘XrljL = u1n7X+ = u2n7X3+ - U‘Sn?XJr = 11‘4117)(Jr = u;rn’
;:u;n;xg ZUEH;XEZUEH;XI = U X5 = Ugy; (48)
Xﬁi_Aiﬂ A;iz’ (I)lin7X9 _spln7X10 \I]i

Substituting obtained solutions of differential equations ([£)- (&) into the bound-
ary conditions ([{@)-([3) we get the system of equations relative to unknown con-
stants [@R) with asymptotic [@@), @) for UL, taken into account:

(ai)ij {Xi}z = {Fi}i; (49)

18



N N N N
a—li_l = Z L?:;u (_1)V ; a—1i_2 = Z Lgrtu (_1)U 5 aii_S = Z ngz_v (_1)U+B]T7 aitl = Z L?ljz_v (_1) ;
v=0 v=0 v=0 v=0
al 2 1
afy = Y L35, (<1)sads = Liady = —kaJ,, (k) safig = —ndu (k) Bl = = 37—
v=0 v=N+1
N
Z Ly}, (=1)"+Bj;ad, = ZLGu sy = Z Lyt (=1)";ad, = Z Ly, (=17
v=0 v=0
T T |
aziﬁ = ,5171) ) a2i7 = ,5:2) asilo = kaJ,, (k2); ‘139 = —nJy (k1);

aBS_ZLSnU ~1)";a5, = ZLlnu —1)"5a, = ZLQHV - +B17a43 ZLsnu -

N

v n I
(L44 - ZL4TLU - (L45 ZLng;/ (_ ) ;a;4 = 1;@21:9 = R_O (kl‘]n (kl) —Jn (kl)) )
v=0

ndn (ks) ko) (k 1 1 |
afﬁo = Ri 2 — 2 R(S 2);G§Es = <—7 + 571) n (11)5 a5i7 = <_£ + SWz) Iy (72) 5

N
Vo1 34 v
+ = § L nv -1
RO prt 1 ( ) }

N N N
| Vo1 v, Vo1 v
= ko )= 81 { 3 (0 6+ S (1) zL§:V<—>}

v=1 v=0 RO v=0

N N
VOl u 1/01 v
— {z [Lg:,, s 2] S o S oy

v=0

N N
v 14 v k
aj = B {Z Li, (1) By + i [ZLL*W (=1)" + B

v=1 v=0

a’63_31 {ZL3nV - BV—F@ ZL?)’IUJ V I/Ol

v=1

ZLlnu - +Bl

N
a64 - Bl ZL?J:V - ﬂl/ + ﬂ ZLALnu - VOI ZL4nv - }

= NSy, () s ag; = —N'Syady, (12) s ags = —ndn (ks) s ady = ads = A
n Eshs

Q79 = —m [k%z],lzl (kl) + V02k1z]7|1 (kl) - VOQHQJn (kl)] ;
Eshy . .
a7 = =) R [nkaJ,, (k) + voandn (k2) — voen,, (k2)] ;

1—vy 1—vg1 n
a§1:B1 5 01§ag_5:B1 5 OIR_O;
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Esh
+ 2h2 .
% = T2, Ro [—nk1Jy, (k1) — nkiJy, (k1) + ndn (k)] 5

Esh

+ 2162 2 2 7n |
= |- n —k5J) (ko) + koJ! (k1)) ;
810 (1 —V§2) RO [ e (k2) 2 n( 2) ? n( 1)}

a92_D1 {ZLQHV - ﬂV ”VOl ZL4nv - +BT }7

N N
v nvo1 v
=D S st o T S };

v=1 v=0

N
a93 =D {ZLBHV - ﬂl’ ”VOl ZLBnU - }

v=1 v=0

N
o= ouf3- [t 2 S o

RO 5nv

v=1 v=0 }
+ V02n2 <

N N
a£_m{£ﬁ&¢4¥@+”m L2, (~1)

1
ags = Dy [(7125 —1) Jy (m) + vo2 (571 - %) Jy (m

(1)
(72) + von®

)
73 ’
+ 2 " 1 ! 1

ag; = Dy (715—1)Jn(72)+V02 Sy —— | J, )

A)]
Y2 722
1—vp2 1 —1p2 1—vp2
CL;S = —DQ ( 2 ) ng (kg) a101 = D2 <27&)> ;aii_02 = D1 ( 2 y
11—y n 1
af04 =-D —= _;aIFOG =—Don (1 —vo2) | S71— — | Jp ()3
2 Ro Y1

1 _
afo; = —Dan (1 - vp2) (SW - £> I (v2)5a13 =15

1—
ag'g = DQ (%) [2H2Jn (kg) + 2]{33‘]7‘1 (kg) — k%Jn (kg)} 5
N N N N
az =Y L3, (—=1)"an =Y L3, (-1)"5a5 = > Lin, (=1)"505 = Y L3, (-1)";
v=1 v=1 v=1 v=1
Ags = ZLSnU ~1)"+B; a5 = ZLlnu —1) a5 = ZLQHV —1)"5a3 = ap_L;
v=1
N N N N
az = L, (=1)"am =Y Ly, (=1)"5a5 = Y Lin, (-1) 505, = Y L1, (=1)"+Bj;
v=1 v=1 v=1 v=1

20



A5 = Z L5m/ " ag = B Ry A3 = BlR_O 6:
N
{Zﬁ‘ Wi }
1nv v an )
v=1

N
0/73:A {ZLgnu(_ ﬁV+_+ZL3nV -
v=1
N N
azy = Ay {ZLZ;V (=1)" B, + | D L3, (1) + Bj
v=1 v=0
N

{ZLW— ﬂu+ZL5m— }

{ N
v=1

{

(L3, (

5n1/

1—V02

ZLlnv -

ag; = Bi

_ 1- V02
Ago = Bl ZLQWJ - ZLQWJ -
5 = By Zﬁ‘— zv-—
83 1 2 R 3nv 3nv
_ 1- V02
= m 5 L S o Sk
1—y n N
_ — Vo2 _
ags = B1—5 {_R_o ZLgnv( )" + By +ZL5””
v=1 v=0
11—y 1 N
_ 2 — _
ajor = D1 =3 —= ZL%W(_ )’ ﬂ”+_ ZL2
2 RO v=1
- _p 1 —vp2 [Z Lo (1) 8, — 2
G102 = M1 D) " 4— v 1 i—
" Ro Z L4nv (_ ) Ro Z L4nv
_ Y
Q9o = D1 Fgén agy = D1;
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1nv \

}
}

- BU + L5nu (_ )U} grnu}

2N
l

o
)
)
m}

sz

(—1)”@/; }

b

Ly (

4nv -



N N N
— 1- Vo2 — v 1 — v n — v
a103:D1 2 ZLgnu (_1) ﬂV_FR_ZLénU (_1) ﬂV_R_ZLgnv( 1) ;
v=1 0 v=0 0 v=1
1 -y n | & N
_ 02 — v * —
a104:‘D1 2 {_R_O ZLjnu(_l) +Bl +ZL4217W ZL4"V - B”’}
v=1 v=1
1 -y N
_ — Y02 _
Q105 :Dl 2 {ZLgnu( ZL5TLU - ZL5nv }
v=1
a +
* = Z@W + 4 Zle,ng,l =1,2,3......10
= v=0
-+ v * -+ v ~t v
Clnu Lgrtu (_ ) 7C2n; = A3nJ7 CBnu = Lé:{u (_1) ;C4nu = Lgrtu (_ ) )
ABnJ D —+ Vo1n Vo1
Al = ————5"2J, (Vin): Cony = —B1 |LgY, + —— L, + — L&t | 5
3ng — _,an (7] ) 6nv 1 |: 6nv + R 6nv + R 6nv
—+ 14 n — vV o~ — 14
CQnI/ = _Dl |:Lé7tu ;il ngz_u] 702711/ - Lgnu (_ ) ;CSnu - Lénu (_ )
Aspi — 2 SAszp; — =
—+ 3n Y n 3n,
C‘an = D2 d : 2 : L (7J2n - 7’L2 + 1) Jn (7]71) )
Crn =~ {Lz,; —1)" B, + ZLGW - }
—— 1 —vp2 5— v .
C8n1/ _Bl 9 _R_ 6nv (_ ) +L6nu( ) ﬁl’ )
— 1 — U n _ _ 1 — v
ClOnu —Ds 92 = {_R_OLénv( 1) Lgnu (_ ) ﬂl/ Lénu (_1) ﬂl/} ;
Solution (Ed) will be
X; = Z S Zz;jgjg;tm; =1,2,3....10) (50)
where " o —t
T AL Cr AL,
+ knv=9ki . 1+ knv—9ki
ZnVJ - Z AL Z;WJ - Z AT
k=1 10 k=1 10
For Usy, and Uy, we obtain
U’Bn,u = Li)ril,uXi + Lgril,uXi + Lgril,uXi + Liril,uXi + Lgril,uXi + Lﬁny rnu; (51)
szr:zu = L7in;rXi + LSn;rXi + Lgnugznu7
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To improve the convergence of the obtained solution we will single-out the
characteristic features in unknown functions. It is known that [I3, [[4] approach-
ing to angle circles on surface » = 1 and z = [ expression for the pressure P+

and its derivatives must have the following singularities

a) for the pressure
2% PE (20) = Brzo{f (12 — 28); P (1) = DEV/ (1 — 1)
(52)

Pyt (20) = Anyf (1 = 23

) for the derivatives from pressure
B;;ZO

AY OP5 (2or) = _
or T e 22

|r:1: )
3/12 _ 2
1?2 — 25

OPET (2o7)

or
(53)

opPe (zor)l _ DiEm
82 === ‘3/1 — T(Q)'

Expanding (£2), (B3)) into Fourier’s, Fourier-Bessel’s series corresponding to

(@) we obtain T2, [I5]

A/ (12 = 23)° =3 fab cos B0 Bazo {) (12 — 23) me, sin B, 2o;
v=0

(54)

oo
= Z f25% cos By 20;

A
Df v/ (1 — TO Z Gpj In (VinT) s ——= 5
12 - Zo v=0

B ZO
E ~sin ﬂuzOv

DiFe,;I'(2/3) Loyrse (Vin)

where
o _ AT (5/3)0 (1/2) Trys (BD27°
nv = 7/6 1Inj = ey
v 2’7377,
o = Dife,;22/°T (5/3)Thysys (Yjn) st _ I (2/3)T(1/2) Jis6 (W)gl/g
nj 75)7/13 »Jny 15/6@3/6 ’
o _ AT B/3)T (1/2) Jiaye (B 27017 AT (2/3)T (1/2) Jiys (Bo1) 2V/°B,1
W 15/657/6 AC A 7/6 '
Unknown coefficients fef, fre® gn] , g;;ji at large v,j (v,7 > N) behave
itself like coefficients of known expansions ([4)), i.e. we could write
et xet xet
e n S *e f *S g’ﬂ, *e gn *S
nzzjt = si nI:/tv nvi = f u:thgnv - Jivgnyagnui *]1 g V:l:' (55)
nN an gnN InN
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Thus, if in the unlimited systems of algebraic linear equations ([24]) unknown
coefficients are replaced with formulas ([B3) than elements of N-th columns in

matrixes will be:

i = (—i):‘/{w,'l NI ) (g _ ey i <;12)U+;+}dA

fan (52 + ﬂﬁ) v=N+1
—1)* N2J(N) T () _ (=1t
F1+ . ( / n n 1— 252l d)\
N (> +57) (=) V:XN:H > + 62
_1\H 2 71 o0 S+J n
GZL—’J_V _ ( *Br / A an(/\) Jv; (/\)% (1 _ 672;(1) Z FY;
InN (% + ﬂu) j=N4+1 ’YJn -A
—1)* 22T (N) Ty (V) _ o~ Yng In (Vi)
G711+ ( & / n n » (1 —e 2%1) nJ
v LT Z
. 2 71 oo *s-l—
FZQE _ In E”an) / A JnQ()\) In (N) (1 _ 872;(1) dX:
. e Vin — A v= N+1 %2 + 62

— 2
nN Vin = A v=N+1

pe, = J.n) / { VL) (1 2ty 3 %} dx (56)

In (jn) N T2 (N - - QZS*Jn (Vjn)
*2+ J n 25l J .
GnuN g*s+ / { 2 /\2) (1 +e ) Z W dAv

nN %(%‘n j=N+1
Ghi =220 | { A (e 3 ) } &
e G {0 0 § UM o
Fouy = (_11%;5# / { /\jz}({/\z)j%g)\) (1—e) U_i;rl s )2 fyﬁg*s— } dX;
G = <—;£;_ﬂu { 200 ;o j; | gzz?nj,i () } o
i =L [ (SO ey - i),
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nN

e (an)/{)\QJh (A) Jn (V) (1 e 2) i M}d,\;

S > (71271 - %) v=N-+1 7+ 57

— Jn( n) /\3J7‘12 ()‘) —23¢ - (_1)1/@/ rsz;
FS#N_ f;lj /{%('7?”_/\2) (1_62l) Z W}d/\,

nN v=N+1

*2— Jn (Yjn) /\3‘]7‘12 () 925 = ny In (Vin)
G2 = J / 2)(1—62l) Z ng TR IR AN

nuN — *S— 2 2 )2
nN > (an A j=N+1 Tin A
_ In (Vin) AT (N _ —  Inj In (Yin)
G*2N _ J / n (1 te 2;41) Z J d\.
n s— 2 2 )2
. InN (’an - )‘2) j=N+1 Vin A
where

QUSIST (2/3)T (1/2) s (o) "N frst (1) & it (1)

37/6sh (5l) 1;) 2 + (32 _V§+1 w4+ p2

27/617/ST (5/3) T (1/2) I7 /6 (541) Z
%2 + ﬁ2 Z

313/65h (3) o %2 + 62 ;
22/3A1/3F (2/3) "+5/3 Z gnu FYJ'”« _ Z gnu FYJ”)
()\2 - n2) J2 ( v=0 ’7377, - )\2 v= N+1 ’YJTL - A2 7
22/3/\_2/31—‘ (5/3) (1/2) n+2/3 Z gSiJ '7]71 _ gnu ’7771
(A2 =n2) J2 () Jn ( v=0 Vin = v=N+1 Vin =N |

21/37 (2/3) T (1/2) [%11‘1/6( )—1/611/6(%1)} Nl L1 E, & (1),
76 5h () ‘ZW— 2. AT

v=0 v=N+1

27/6113/T (5/3) T (1/2) [%11‘7/6( sd) = 7/6176 (%z)} N-lpoy g £ (<1)" 8,
213/65h (3) _Z 32 _|_52 - Z 2 _|_52

v=0 v=N+1

Substituting the obtained values into condition of hydro-resilient contact ()
and taking into account @), B4), BH), @f) we obtain such unlimited systems
written in matrix form to evaluate the unknown coefficients

et xet et _xed ot *0+ *0+ s .
nl/5fn1/ 5gn_]7gn7 5fn1/5fn1/ 7gn77.gn7 a(V7]_07152 """ N)a

(FE), L5}, (F5),, (025, 4 (G1),, {95} + (651),, o), = O
NxN 1xXN NxN IxXN NxN 1xXN NxN 1xXN
(57)
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(F0),, ), + (1325), {fa ), + (610),, {9i )+ (G55), fon ), = 0

NxN 1xXN NxN IxXN NxN 1xN NxN 1xN
(58)
(R, o b, + (B2, 4020, —{f*ei} +{f*“i} (59)
NxN 1xXN NxN 1xN
(Ra),, S, + (R, a0}, = {on™ ), + {on ) (60)
NxN IxXN NxN 1xXN 1xXN 1xXN
(Ri‘:’n«)uu{fﬁl}u + (Rg:n)uu{gzin}] = (Eitn)uu{f’:;Oi}V; (61)
NxN 1xXN NxN 1xN NxN IxXN
(Rétn)v,u{f”%l}u + (Rfﬂ)vy{gzin}J = (Eil)yy{f;()i v (62)
NxN 1xN NxN 1xXN NxN IxXN
(B5),, A0}, + (M) Ao}, = {07 ), (63)
NxN 1xXN N><N 1xN 1xN
(Bin), 4525, + (M3,) 40075}, = {on ), (64)
NxN IxXN NxN 1xXN 1IxXN
where

Rinvy = pw2C2RmW;i =1,2,3,4.

+ _ ret ot+. + __
rnv — Jnv + fnu 7gznj gng +gn; - gnJ )
_ 2N
E4n,uu_ Z nu,u /YJ" - ) ﬁl’ 7 61/#;
Bo ), (502)
Ef . =Jn ()0 By, = ———0yus B = 020
3nuv ( 2) 2 2np 502571# 12 Inu 5016&1
v 2 — 1
B ={ [ S Cuemr |+ 2 3 Lla,
v=N+1
+ + (_1)V sy, (522) In (Yjn) € n
Mlnuu Cnuu (WJ") M2nu1/ - Vﬁn _ %g = E )
(-1" sy dy, (522) Jn (Vi) 5,Lmﬂu

My =
2 ’Ypm, - %3

Thus we obtain the closed finite system of 8 (2N + 1) linear algebraic equa-
tions for the symmetrical and anti-symmetrical components of the solution of

given problem. From the system (&) -(6d]) we define the unknown coefficients

et xedt et _xed ot *0+ *ot, s
nl/af'n,y 5gnjvgn] ’ nl/7fnu 7gn]7gn] 5 ,j—0,1,2N
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Let us consider some particular cases, which are directly obtained from (BI):

1) If liquid filler is absent inside the cylindrical cover than we obtain the
soluted system of first four matrix equations (&) -(E0) with the following mod-
ifications

+ +
e = 05977 =0;

2) For absolute solid (soft) cylinder the soluted system will be formed of

matrix equations [0), (BY) and such two equations

(s, = U, o), = o e, = U, ), = ),
Nx1 Nx1 Nx1 Nx1 Nx1 Nx1 Nx1 Nx1
(65)
3) If the cylindrical cover is replaced with liquid cylinder we obtain the so-
luted system containing (B4), ), [@E3)), () matrix equations and such matrix
equations:

(), U3, = (B ) o) (o), = (B, (o),
Nx1 Nx1 NxN  Nx1 ., Nx1 Nx1 NxN Nx1

(66)
{ry sy =y ety et d, = o)

Nx1 Nx1 Nx1 Nx1 Nx1 Nx1

4) If point pressure source
P° = Pyd (r —ro)0(0) /4mr;

is placed inside the cylindrical cover than the system of matrix equations (&)
- ([62) must be changed as follows

St = = gns = gaat =0; (67)
at - POEVEnj (_1)U JIn (7jn) Cos ﬂuZO, xa— - POﬂUEnj (_1)1/ JIn (7jn) sin ﬂvzo'
v=0 v=0
o— _ _ i PoenjJ2 (vjn) sin Byzo ot _ _ i Poeven;dn (Yin) €os Bu2o
" 7=0 ml o v=0 ml '

Thus, in this work a new problem solution methodology of contact interac-
tion of acoustic medium with resilient finite bodies of cylindrical form, based on
application of boundary integral equations method in conjunction with series
method with later use of series convergence improvement taking into account
the particularities of the determined functions.
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