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Thermal Equilibrium Calorimeters — An Introduction

Dan McCammon

Physics Department, University of Wisconsin, Madison, WI  53706, USA

Abstract.  Near-equilibrium thermal detectors operate as classical calorimeters, with
energy deposition and internal equilibration times short compared to the thermal time
constant of the device.  Advances in fabrication techniques, cryogenics, and electronics
have made it practical to measure deposited energy with unprecedented sensitivity and
precision.  In this chapter we discuss performance considerations for these devices,
including optimal filtering and energy resolution calculations.  We begin with the basic
theory of simple equilibrium calorimeters with ideal resistive thermometers.  This
provides a starting point for a brief discussion of electrothermal feedback, other noise
sources, various non-ideal effects, and nonlinearity. We then describe other types of
thermometers and show how they fit into this theoretical framework and why they may
require different optimizations and figures of merit.  Most of this discussion is applicable
also to power detectors, or bolometers, where the detector time constants may be short
compared to variations in the incident signal power.

1 Introduction

Thermal detectors in general have a number of characteristics that make them more
attractive than ionization detectors for many applications.  Some of these are directly
related to the lack of a requirement for efficient charge transport: if it is not necessary to
collect electrons, large amounts impurities can be tolerated, and a radioactive source or
specialized target material could be embedded within the detector.  This also opens up a
wide range of materials options, so the detector might in fact be made of the source.
Other useful characteristics are sensitivity to exotic interactions that produce no
ionization, and energy thresholds that can be made almost arbitrarily small.

Most detectors, including all ionization detectors, are non-equilibrium devices.  In such a
detector the idea is to get a substantial fraction of the deposited energy into a detection
channel, and then to collect it as completely as possible before it decays into an
undetectable channel.  Here “channels” are the various forms that the internal energy of
the detector can take, and the “detection channel” might for example be free charge (for
an ionization detector), photons, phonons, or quasiparticles. To get good energy
resolution, conditions must be made very uniform throughout the detection volume so
that the branching ratio into the desired channel, channel lifetime, and collection
efficiency are the same for all events.  Even if this were done perfectly, however,
statistical fluctuations in the branching still limit the energy resolution.  In a typical
ionization detector the charge channel gets only about 1/3 of the event energy, and
statistical fluctuations in this fraction from event to event produce a fundamental
constraint, or “Fano limit”, on resolution [1].  For silicon, this is about 118 eV FWHM
(full width at half maximum) at 6 keV.
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Some thermal detectors also operate in a non-equilibrium mode, collecting only quasi-
ballistic phonons or using sensors sensitive only to excitation energies >> kT.  These can
be fast relative to equilibrium devices, since thermal equilibrium often takes a very long
time to establish at low temperatures, and with no restrictions on equilibration time they
offer even more flexibility in choice of materials.  Such detectors may suffer greatly from
position dependence in the branching ratio into the detection channel and/or the lifetime
and detection efficiency of the relevant excitations.  They are also subject to branching
statistics that are qualitatively the same as for ionization detectors.  But for applications
that require large volumes of dielectric material and do not need exceptionally good
energy resolution, the speed advantage may outweigh other considerations.

Equilibrium detectors in principle offer the ultimate in energy resolution.  With all
channels in equilibrium, there are still fluctuations, but now many independent samples
can be taken on a single event.  For example, consider a thermometer embedded in a
copper block.  The energy content in the thermometer is the detection channel, while the
electrons and phonons in the rest of the block contain most of the total energy.  The
energy content of the thermometer fluctuates, and the fluctuations can be fractionally
large if the thermometer is very small and contains few excitations.  However, if all the
channels are well-coupled a very large number of independent samples are taken in a
short time, and there is no fundamental limit on how accurately the total energy can be
determined from the average energy density in the thermometer.  In this chapter we will
develop a quantitative statement of this argument and discuss the limits on resolution
introduced by real thermometers and other departures from the ideal case.  At this
writing, the best resolution for thermal detectors is ~3 eV FWHM at 6 keV, so it is a
worthwhile exercise to try to understand how far we can go with these devices.

2 Basic Linear Theory of Calorimeters

A simple calorimeter or bolometer has only three parts.  As shown in Fig. 1, these are an
absorber or thermal mass that contains the event or absorbs the incident power and
thermalizes the energy, a perfectly coupled thermometer that measures the temperature
increase of the absorber, and a weak thermal link to a heat sink that returns the absorber

Fig. 1. The ideal calorimeter.  An instantaneous energy input E0  will raise the
temperature by an amount ∆T E C= 0 , and it will then decay back to its
starting point with a time constant τ = C G
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temperature to some defined value in the absence of a signal.  The absorber can be
characterized by its heat capacity C, the thermal link by its conductivity G, and the heat
sink by its temperature T0.

The same configuration can be used to measure a steady power input, P, with ∆T P G= .
In this case the device is usually referred to as a bolometer.  Such detectors have been
used for many years to measure infrared radiation, and their theory is well-developed
[2,3,4].  In particular, Mather has presented a complete linear theory for simple
bolometers with ideal resistive thermometers [4] and made the straightforward extension
to adapt these results to energy detectors [5].  These papers are somewhat terse.  We will
use a slightly different approach to arrive at the same results, and will keep much of the
discussion of this section as general as possible so that it can be applied to detectors with
all types of thermometers.

Section 2.1 contains a qualitative discussion of the most basic factors that influence
energy resolution in any thermal equilibrium detector.  It then uses thermometer Johnson
noise as a basic example of resolution limited by a white noise source.  Section 2.3
analyzes several major noise sources, of which only thermometer and load resistor
Johnson noise are specific to resistive thermometers.  The derivation in Sect. 2.4 of
optimal filtering  for energy detection should be entirely general for any linear system.
Section 2.9 on the symmetry of equations for voltage and current output and 2.10 on
common deviations from the simple detector of Fig. 1 are also quite general.  The
detailed derivation for resistive thermometers begins in Sect. 2.2.  Optimization of the
detector and bias power discussed in Sect. 2.5, which also contrasts the optimization of
bolometers, or power detectors.  Section 2.6 introduces circuit capacitance and
inductance, 2.7 external feedback, and 2.8 the modifications necessary for thermometers
where the resistance depends on voltage or current as well as temperature.

2.1 Limits on Energy Resolution: a first look

One irreducible source of noise comes from the random exchange of energy between the
absorber and the heat sink over the thermal link.  It is an elementary result of classical
statistical mechanics that the magnitude of the resulting fluctuations in the energy content
of the calorimeter is given by ∆E k T CB

2 2= , independent of the conductance of the

link [6].  If the energy carriers in the calorimeter have a mean energy k TB , this can be
thought of as Poisson fluctuations in their number.

These thermodynamic fluctuations represent a background against which the temperature
increase due to an event must be measured, but they do not in themselves limit the
accuracy of the measurement.  The reason for this can be seen most easily in the time
domain, as shown in Fig. 2b.  This shows a simulation of a signal in the presence of
thermodynamic fluctuation noise (TFN), and it is clear that the sudden increase in
temperature due to the event can be measured quite precisely despite the large
fluctuations if one looks closely enough at the “corners”.  This can be made quantitative
in the frequency domain.  Figure 3 shows the power spectrum of the exponential signal
pulse and the noise power spectrum of the thermodynamic fluctuations.  These have the
same shape, with a single-pole roll off at f G Cc = ( )2π , so the signal-to-noise ratio is the
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Fig. 3. Frequency domain.  Note that the signal spectrum has different dimensions
than the noise spectra.

Fig. 2. Simulation of an event in an ideal calorimeter — time domain.  Expanded
views are shown at right. (a) Signal only, shows 10 ms thermal decay time
constant. (b) Signal plus thermodynamic fluctuations as measured with a
noiseless thermometer. The event energy can in principle be measured quite
precisely, even though it is here just equal to the r.m.s. magnitude of the
fluctuations. (c) Includes Johnson noise from a thermometer of sensitivity
α ≈ 250 near optimum bias.  The 50 kHz Nyquist frequency of the simulation
was used as the noise bandwidth.  This is ~3200 times τ sig

−1 .
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same in all frequency bins.  Each bin provides an estimate of the signal amplitude, and
under rather general assumptions the noise in different bins is uncorrelated, so the signal
to noise ratio will improve as the square root of the number of bins averaged.  Averaging
a bandwidth ∆f G C fc= = 2π  will give a mean error just equal to the thermodynamic

fluctuations, k T CB
2 , while 8πfc will halve this value.  By going to arbitrarily high

frequencies, the signal can be measured to arbitrary accuracy.

There are a number of things that keep us from reaching this goal.  Anything that makes
the signal start falling faster than 1/f or makes the noise fall more slowly than this will
produce a reduction in signal to noise ratio above the frequency — call it fbad — where
this occurs.  The resolution improves as the square root of the bandwidth as long as the
s/n ratio is constant, but little more is gained once it starts dropping rapidly, so the “useful
bandwidth” will be proportional to fbad.  If energy is deposited or thermalized over a finite
time, or if the absorber is imperfectly coupled to the thermometer, the signal will have a
finite risetime and its power spectrum will have an additional pole above which it falls
off as 1 2/ f .  This limitation is discussed in more detail in Sect. 2.10.  Alternatively, there
might be some additional noise source, such as amplifier noise, that is independent of
frequency.  Since the thermodynamic fluctuation noise is dropping as 1/f, it will at some
point reach this “noise floor,” and the total noise spectrum will flatten out.  The energy

uncertainty is proportional to ( ) /f fc bad
1 2 and to the magnitude of the TFN, k T CB

2 , so
for a high-resolution detector one would like to minimize both.

In the sections below, we analyze in detail the operation of detectors with an ideal
resistive thermometer, or thermistor.  This important class includes both the standard
doped semiconductor thermometer and the promising superconducting transition edge
sensor (TES).  A thermistor might seem to be a poor choice for a calorimeter, first
because it has an irreducible Johnson noise and second because it transduces temperature
changes as resistance changes which then require power dissipation to read out.  This
readout power will warm the detector and increase the energy fluctuations.  We will see
that the very high sensitivity of available thermistors does much to mitigate these
drawbacks, and they are currently the most common thermometer type.  Here we use the
Johnson noise of such a thermometer as a concrete example of how a white noise source
limits the useful bandwidth, and of the optimal operation of a detector where the
thermometer signal to noise ratio increases with readout power.

The effect of the Johnson noise is shown in Fig. 2c.  At frequencies above the point
where it crosses the thermodynamic fluctuation noise, the signal-to-noise ratio per
frequency bin starts dropping linearly with f as can be seen in Fig. 3, and there is less and
less gain from including higher-frequency bins in the total.  The useful bandwidth is
proportional to r, the ratio of the low-frequency TFN to the Johnson noise, since the TFN
∝1/ f  above fc, making the crossing point r fc⋅ .  The Johnson noise is fixed in voltage
spectral density, while the TFN is a temperature spectral density, so r depends on both
the thermometer sensitivity in converting temperature to resistance changes and on the
readout current that converts these to voltage changes.  It is convenient to define a
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dimensionless local sensitivity for the thermometer

α ≡ =
d R

d T

T

R

dR

dT

log
log

, (1)

and the readout current can be parameterized by the temperature rise ∆TBias  it causes
when the dissipated power flows to the sink over the thermal link.  For a very small

temperature rise, one then gets the simple result that r T T≈ ( )α ∆ Bias 0

1 2
, where T0  is the

heat sink temperature.

The temperature increase clearly has an optimum value.  If the bias current and ∆TBias  are
very small, then the signal and transduced TFN are also very small in terms of voltage
and will be completely dominated by the Johnson noise.  On the other hand, a large ∆TBias

significantly increases both T and C, greatly increasing the TFN.  The optimum value of
∆T TBias  depends on the temperature coefficients of C and G, and on α  for α < ~ 5.  For
practical devices this value is between 0.11 and 0.20 [5].

We can anticipate some results below and express the minimum energy uncertainty due

to these two noise sources alone as ∆E k T CB= ξ 0
2

0 , where C0 is the  heat capacity at the
heat sink temperature (see (37)).  With ∆TBias  optimized, the only strong dependence of ξ
is on α .  Since the signal-to-noise ratio scales with the square root of the usable
bandwidth, which is in turn proportional to r and α , we expect ξ  to scale as α – /1 2  for
large values of α .  In fact, ξ α≈ 5 1 2– / , so the energy resolution can be much better than
the magnitude of the thermodynamic fluctuations for very high thermometer sensitivities.
Inspection of Fig. 3 shows that achieving this result depends on meeting the stringent
requirement that there not be another pole in the signal response (due to thermalization
time or internal time constants in the detector) at a frequency below about α fc .  This is
discussed further in Sect. 2.10.  Figure 3 also shows that for a very sensitive
thermometer, the Johnson noise will appear negligible compared to the TFN at low
frequencies, yet the energy resolution is still entirely dependent on its level..

We will now look more quantitatively at the detector response and noise, both to justify
the assertions above and to include additional effects.  These are first derived in terms of
voltage output, but see Sect. 2.9 for conversion to current output.

2.2 Power responsivity as function of frequency

This derivation is done in steps in an attempt to keep it as transparent as possible.  I have
also introduced several definitions that are more or less commonly used to keep later
equations from becoming too dense.  These are by no means standardized, and they have
been borrowed without attribution from a number of sources based variously on
a) breadth of use, b) logical consistency, or c) earliest definition.  For those new to
thermal calculations, note that most of the familiar solutions to electrical circuits can be
taken over using the analogies for thermal variables shown in Table 1.

For historical reasons, the derivations of this section are done with the assumption that
the output signal is the voltage across the thermistor.  As explained in part 2.9, however,
the symmetry of Kierkhoff’s circuit equations results in a very simple transformation that
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will convert these to the current-output form.  As a result, for example, the current output
of a voltage-biased positive temperature coefficient detector is identical to the voltage
output of a current-biased negative temperature coefficient detector.  Table 5 gives the
current-out form for all of the equations derived in this section.  If you have been
working primarily with current output (as is usual for TES detectors), you are encouraged
to skip ahead and read Sect. 2.9 before continuing.

Table 1.  Thermal–electrical analogies

    Basic Quantities   Equivalent Equations

temperature: T V→      (voltage) T P G V IR= → =

thermal power: P I→      (current) dT dt P C dV dt I C/ = → =

thermal conductivity: G R→1  (conductance)

thermal energy: E Q→     (charge)

heat capacity: C C→     (capacitance)

D.C. response.  We can write the change in voltage across a resistive thermometer for a
given power input as

dV

dP

dT

dP

dR

dT

dV

dRin in

= . (2)

A steady energy input Pin  will produce a temperature rise in the absorber ∆T P Gin=  as it

flows through the thermal link to the head sink, so dT dP Gin = 1 .  Using the definition
(1) for thermometer sensitivity α , dR dT R T= α .  For the bias circuit shown in Fig. 4a,
dV dI RL= −  and we can write for the voltage across the thermistor

V IR
dV

dR
I R

dI

dV

dV

dR

dV

dR

R

R R
I K IL

L
L= ⇒ = + ⇒ =

+
= , (3)

Fig. 4. Common detector bias circuits: (a) bias with series load impedance, RL ,
and  (b) a circuit often used when RL  is small.  Since (b) is readily converted
to (a) by Thevenin’s theorem ( , )V I R R RB B S L S= = , we will consider only (a)

VB

RL

R

(a)

IB RS R

(b)

I    V I    V
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where for future convenience we define K R R RL L L≡ +( ) .  For R RL >> , KL =1.  For
lower values of RL , KL  represents the “loading factor” of the load resistance.
Substituting these quantities into (2) and writing the bias power dissipated in the
thermometer as P I R= 2 , we get

dV

dP G

R

T
K I

P

GT I
K

L

I
K

in
L L L= = =

1 1 0α
α

. (4)

The quantity L P GT0 ≡ ( )α  appears often in calorimeter calculations, and can be
regarded as the dimensionless D.C. “gain”.

A.C. response.  Figure 5 shows the thermal circuit equivalent of the calorimeter of Fig. 1.
The net current onto the capacitor is P GTin − , so we can write

dT

dt C
P GTin= −( )1

. (5)

For Pin  a delta-function, the solution to (5) is clearly just the exponentially decaying pulse
shown in Fig. 1.  If we assume P t P ein

i t( ) = 0
ω , then the solution is

T t
P e

G i

i t

( ) =
+( )
0

1

ω

ωτ
, (6)

where τ ≡C G/ .  We can then write

dT

dP G iin

=
+( )

1 1
1 ωτ

, (7)

and using this in (2) makes (4) become

     ( ) ( )
dV

dP

L

I i
K A

in
L=

+( )
≡0

1 ωτ
ω volts watt . (8)

Electrothermal feedback.  Up to this point we have been ignoring the fact that the bias
power P I R V R= =2 2  is part of Pin .  We can regard the bolometer as an “amplifier” with
a thermal power input and an electrical voltage output.  The “gain” of this circuit is then
given by (8).  The contribution to Pin  due to V can be regarded as “feedback”.  Going
back to the purely electrical case as shown in Fig. 6, if β ∂ ∂≡ )V V

Vin out
ext

, then

Fig. 5. Thermal equivalent circuit

Pin

1
G

C T
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V V Vin ext= +β , and V AV A V Vin ext= = +( )β .  This leads to the standard result for the
“closed-loop gain”:

A
V

V
A

ACL
ext

≡ =
−
1

1 β
, (9)

where the product βA  is called the “loop gain”.

For our bolometer, the input to A is thermal power, and Vext becomes Pext.  The output is
still voltage, so A and β  now have dimensions, although their product necessarily does
not.  Now A is given by (8) and β = dP dV  is the change in bias power into the detector
caused by a change in voltage at the output, or “electrothermal feedback” (ETF).  With
P IV= , we have dP IdV VdI= + .  From the bias circuit in Fig. 4a, dI dV RL= −1  and

β = = +
−⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟

dP

dV
I V

R
I

R

RL L

1
1 . (10)

Taking the gain A from (8), the loop gain is then

β
ωτ ωτ ωτ

A I
R R

R

L

I i
K

R R

R R

L

i

bL

i
L

L
L

L

L

=
−⎛

⎝
⎜

⎞

⎠
⎟ ⋅

+( )

⎛

⎝
⎜

⎞

⎠
⎟ =

−
+

⎛

⎝
⎜

⎞

⎠
⎟

+( )
=

+( )
0 0 0

1 1 1
, (11)

where we have defined

b
R R

R R
KL

L
L≡

−
+

= −2 1. (12)

Our responsivity including electrothermal feedback (the “closed loop gain”) is now

S
dV

dP
A A

A
AKV

ext
CL Fω

β
( ) ≡ = =

−
=

1
1

, (13)

where KF  is the “feedback factor” giving the change in gain introduced by ETF.
Therefore

K
A bL i bL

i

i bLF ≡
−

=
− +( )

=
−

⋅
+

+ −( )
1

1
1

1 1
1

1
1

1 10 0 0β ωτ
ωτ

ωτ
, (14)

and

Fig. 6. Feedback circuit

V A V= ⋅ in

β

A+Vext

Vin=Vext+ βV

+
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S
L

I i
K K

L

I bL i
KV L F L

e

ω
ωτ ωτ

( ) =
+

=
−( ) +

0 0

0

1
1 1

1
1

(V W), (15)

where τ τe bL≡ −( )1 0 .  Note that (12) shows the ETF is controlled entirely by the load
resistance, since b and the resulting feedback depend on the value of RL  relative to R .
For a negative temperature coefficient thermometer (α and L0 0< ), one gets negative
feedback for R RL >  and positive feedback for R RL < .  For a positive temperature
coefficient, the reverse is true.  In both cases, there is no electrothermal feedback when
R RL = .

We will point out in Sect. 2.5 that in the idealized linear case we are considering here
electrothermal feedback has no effect on the NEP, energy resolution, or count rate
capability.  However, for real detector systems there can be large practical benefits.
Positive ETF has been used to boost signal levels to reduce the effect of amplifier noise,
but the biggest benefits come from exploiting the large negative ETF available with very
high sensitivity thermistors.  This can stabilize gain and reduce nonlinearity effects, as
first discussed extensively by Irwin [7].  One can get some idea of the importance of this
for high-α  detectors by trying to imagine using a high gain operational amplifier without
negative feedback.  Flattening the gain over a wide bandwidth and stabilizing the
operating point are two major benefits, although there are differences of degree from the
op-amp case.  The nonlinearities are worse, the loop gain βA  usually does not have the
very large values needed to stabilize the gain at 1 β  to the desired accuracy, and β  itself
depends on a varying I  and on R  for finite values of RL .  Section 3 discusses
consequences of large signals, where single events heat the detector enough to change its
properties and alter the response to additional events that occur before the detector has
returned to its equilibrium temperature.  Negative ETF shortens the cooling time by a
factor of 1 1 0−( )bL , and can greatly reduce response variability between events at high
count rates when such large signals are present.

2.3 Major noise terms

Now that we have the voltage responsivity of the detector to an arbitrary signal power
input, we need to find the noise voltage at the output in order to determine how precisely
signals can be measured.  We calculate the output noise voltage below for the most
important noise terms.  These are generally uncorrelated, so the total output noise can be
found by simply adding their squares.  A common figure of merit for power detectors is
the r.m.s. power required at the input at a given frequency to produce an output voltage
equal to the r.m.s. noise voltage in a unit bandwidth at that frequency.  This noise
equivalent power, or NEP, is given by e Sn V( ) ( )ω ω .

Thermodynamic fluctuation noise.  One unavoidable source of noise is the statistical
fluctuations in the energy content of the detector produced as it exchanges energy with
the heat sink.  One can derive directly from fundamental assumptions and definitions of
statistical mechanics that

∆E k T CB
2 2= , (16)
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where C is the detector heat capacity [6].  This, however, says nothing about their
frequency spectrum.  The fluctuations are produced by a noise power flow over the
thermal link G, and the power in a unit bandwidth at frequency ω  could be represented
by the Pin of Fig. 5, resulting in temperature fluctuations given by (6).  If we assume for
now that this power spectrum is a shot noise and therefore independent of frequency, then
P0 is constant.  As shown, for example, by Richards [7] this can be integrated over all
frequencies to give the total energy fluctuation (16), which requires the spectral density
of Pin to be

p k T GBTFN
2 W Hz2 24= . (17)

A white spectrum is the only fixed spectrum that will give the correct result (16) for an
arbitrary choice of C, and is also the result of detailed calculations of the power flow on
the link for cases with simple physics.

Equations (16) and (17) are valid only in thermal equilibrium, where the temperature T of
the detector is equal to the heat sink temperature T0.  In general, the detector will be at
some higher temperature, most usually due to the bias power P used to read out the
thermometer.  The power spectral density in the link will then depend on details of the
nature of the link.  Two limiting cases have been worked out.  When the mean free path
of the energy carriers is large compared to the length of the link (the radiative or specular
limit), Boyle & Rogers [9] find

p k T G
t

BTFN
2 W Hz2

0
2

0

2

4
1

2
= ⋅

++β

( ), (18)

while for mean free path small compared to the length (diffusive limit) Mather [4] gets

p k T G
t

tBTFN
2 (W Hz)2

0
2

0

2 3

14
1

2 3
1
1

= ⋅
+
+

⋅
−
−

+

+

β
β

β

β , (19)

where t T T≡ 0  (here and for the remainder of the chapter), and T β  is the assumed
temperature dependence of G.  Note that we are using the most conventional definition
for the link thermal conductivity, G P TEND INTO LINK END≡∂ ∂ , which is different at the two
ends of a link with a temperature gradient, but is always positive.  How this G is related
to the thermal conductivity constant is shown nicely in [4].  In this chapter, G without a
subscript refers to the detector or hot end.  Equations (18) and (19) have been normalized
to T and G at the heat sink temperature for later convenience in optimizing the value of t.
We also collect the thus-normalized link properties into functions F ( , , )LINK link physicst β
such that (18) and (19) can both be written as

p k T G tBTFN LINK
2

0
2

04= ⋅F ( , )β (20)

Since pTFNis equivalent to an external power input Pext ( )ω  in each frequency interval, we
can use (15) to write the output noise spectral density as

e p S k T G t
L

I i
K Kn V B L F( ) ( ) F ( , ) .ω ω β

ωτTFN TFN LINK V Hz= ⋅ = ⋅( ) ⋅
+ ( )4

1
10

2
0

1 2
0 (21)

Thermometer Johnson noise.  Another irreducible noise source for detectors with
resistive thermometers is the Johnson or Nyquist noise in the thermometer.  This can be
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modeled as a voltage source with spectral density e V HznJ  in series with a noiseless

(but temperature sensitive) resistance R, where e k TRnJ B= ( )4
1 2

.  In the bias circuit of
Fig. 4a, the output voltage in a unit bandwidth would be dV e R R R e KnJ L L nJ L= ⋅ + =( )  if
there were no thermal effects.  However, the bias current I does work IenJ  on the Johnson
noise source.  This is physically located in the detector and therefore heats it and changes
the resistance.  The total power is IV, so the expression for β ∂ ∂≡ P Vin  in (10) is still
correct to first order in enJ , and we can use the equivalent circuit shown in Fig. 7.  We
can then write dV e K A dVnJ L= + ⋅β , which can be solved for the output noise spectral
density due to the Johnson noise:

e dV e
K

A
k TR K KnJ nJ

L
B L F-Therm ( )ω

β
= = ⋅

−
= ⋅

1
4 . (22)

The same result can be obtained by direct differentiation of V IR enJ= + , noting that
dR de dR dT dT dP dP denJ nJ= ( )( )( ) , with P IV=  and dI dV RL= − , and retaining only
first-order terms in enJ .

Load resistor Johnson noise.  Referring to Fig. 4a, we can model the load resistor
Johnson noise as a voltage source with spectral density e k T RnJRL B L L= 4 , where TL  is
the physical temperature of the load resistor.  Following the same approach used above
for detector Johnson noise, we first assume no thermal effects.  We then have a simple
voltage divider, and the change in detector voltage V  produced by enJRL  is
dV e R R RnJRL L= ⋅ +( ) .  We write this as e R R KnJRL L L⋅ ( ) , so we can simply substitute
e R RnJRL L⋅  for enJ  in the circuit of Fig. 7.

Now, however, the expression for I in (10) must be modified to I V e V RB nJRL L= + −( ) .
This gives rise to an extra term in dP, which becomes dP dV V e RnJRL L= +β .  The βdV
term is still taken care of by the feedback loop, and we can represent the new term as
“ ”P e IR RnJRL Lext = ⋅  in  Fig .  7 .   The c i rcui t  equat ion is  then
V e R R K A V e IR RnJRL L L nJRL L= ( ) + +( )β .  Solving for V and using A  from (8) and
K AF = −( )1 1/ β :

e V
K AI

A

R

R
e

R

R

L

i
K K k T RnJ

L

L
nJRL

L
L F B L L-Load ( )ω

β ωτ
= =

+
−

⎛

⎝
⎜

⎞

⎠
⎟ = +

+
⎛
⎝

⎞
⎠

⋅
1

1
1

40 . (23)

Fig. 7. Johnson noise source equivalent circuit

β

A KL VPext KL
enJ+
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At the cost of considerably more algebra, this can also be obtained by direct evaluation of
the derivatives in dV de dV dI dI denJRL nJRL= ( )( ) .  It is worthwhile to calculate the first of
these, since dV dI  is the dynamic impedance Z( )ω  of the detector, a function that is
easily measured and provides a valuable experimental diagnostic of detector
characteristics [10].  The usual approach is to differentiate V IR= , writing
dR dI dR dT dT dP dP dI= ( )( )( )  with dT dP  from (7) and differentiating P I R= 2  to
get dP dI .  Substituting and solving for dV dI  gives

Z
dV

dI

L i

L i
R( )ω

ωτ
ωτ

≡ =
+ +
− +

⋅
1
1

0

0

(24)

The response to load resistor noise is then just the voltage-divider formed by ZL  and
Z( )ω : e e Z Z Rn nJRL L( ) ( ) ( )ω ω ω= ⋅ +( ) .  With some manipulation, this gives the result
(23).  The load resistor Johnson noise can normally be made negligible by choosing
R RL >>1, but care must be taken to chose a resistor type that does not produce large
amounts of “excess noise” when the bias current flows through it.

Amplifier noise.  Amplifier noise is normally specified as a voltage noise source enA  in
series with the amplifier input and a current noise source inA  in parallel with the input as
shown in Fig. 8.  The voltage noise then simply adds to the noise at the detector.  If we
had modeled the load resistor Johnson noise as its Thevenin-equivalent current source in
parallel with RL , we would see that the amplifier current noise source occupies
effectively the same position (the battery can be shorted as far as changing signals are
concerned).  So we use the responsivity from (23) for this, and the total noise from the
amplifier referred to the voltages at its input is

e e i R
L

i
K Kn nA nA L F-AMP( ) ( ) ( )ω ω ω

ωτ
= + ⋅ +

+

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

2 2 0

2

1
1

. (25)

This assumes that the amplifier current and voltage noises are uncorrelated, which may
not be the case.

VB

RL

R

V enA

inA

enJ

I

inJRL

Electronic
Amplifier

Fig. 8. Equivalent circuit showing definitions of amplifier noise and
Johnson noise sources
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It is usually possible to make the amplifier noise negligible for the commonly-used
thermistor types.  Doped semiconductor thermometers are easily made with resistances of
tens of megohms.  At this source resistance, silicon junction field effect transistors
(JFETs) operated at ~120 K have noise temperatures less than 5 mK, far below the
operating point of today’s detectors.  Superconducting transition edge sensors (TESs)
typically have resistances of less than one ohm, where superconducting quantum
interference device (SQUID) amplifiers are even better than JFETs are at high
impedance.  Multiplexing multiple detectors onto an amplifier eats into this margin
however, and amplifier noise can become a major consideration for such schemes.

Photon background noise.  Photon background absorbed by a detector has two effects.
First, it is an power source that raises the temperature of the detector while adding no
readout power.  This degrades the detector performance and requires a different
optimization, as discussed for example in [11].  Second, the quantized photon energy
produces shot noise, which appears as a noise power at the input to the detector in the
same way that TFN does.  The input noise power can be calculated by integrating the
shot noise over the photon spectrum.  For high-efficiency systems and h k TBν <<  it is
necessary to take into account the Bose statistics that greatly increase the fluctuation
level.  A useful form of this calculation is given in [4], while a more extensive treatment
can be found in [12].  This background is often very important for infrared detectors, but
for calorimeters detecting higher energy photons it is generally assumed that it can be
made negligible through proper optical filtering.  In practice, it is much more difficult
that it seems to actually achieve this, and “light leaks” should be one of the suspects
when unexpected noise is observed.

Additional thermometer noise.  All resistive thermometers must have Johnson noise, but
they may have additional noise sources as well.  These are specific to the thermometer
type, and are discussed in the following chapters.  Their contribution to the output voltage
can usually be treated in the same way that the Johnson noise was above.  For instance,
thermometer resistance fluctuations rn  can be multiplied by I to give a voltage fluctuation
that is substituted for enJ  in (22).  This gives

e K K I r
V

V
K K

R

Rn R F L n F L− = ⋅ = ( )∆

∆ ∆
,   or 

2

2

2
2

2 . (26)

2.4 Optimal Filtering and Energy Resolution

We assume the signal is of the form V t E f t( ) ( )= 0 , where f t( ) is known and independent
of E0 .  (Note: In this subsection, t is time.)  The problem is to extract the best estimate of
E0  in the presence of a known random noise of spectral density e fn ( ).  This problem can
be solved rather generally for a linear system, which we have assumed in the analysis of
this section.  The calculation is difficult in the time domain because the noise in different
time bins is correlated if its spectrum is frequency dependent.  In the frequency domain,
however, the noise in different bins is uncorrelated on the condition that it is stationary,
which means that its statistical properties do not change during the signal pulse.  This
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seems likely to hold for almost any system in the linear small-signal limit.  (Filtering of
large signals is discussed in Sect. 3.)

We take the discrete Fourier transform of V(t) to obtain the values of si , which is the
signal amplitude in the i th frequency bin.   The root mean square value of the noise
voltage in a bin is given by ni .  Each si  is proportional to E0 , so if the noise is
uncorrelated, every bin provides an independent estimate of its magnitude.  We can
choose a set of weights wi  and combine all the bins to get an expected value for the

signal of E w si i

i

=
=

∞

∑
1

, and a corresponding noise fluctuation ∆E w ni i

i

rms = ( )
⎛

⎝
⎜

⎞

⎠
⎟

=

∞

∑ 2

1

1 2

.  We

want choose wi  to maximize E E∆ rms , so we take the derivative of this ratio with respect
to an arbitrary wk  and set it equal to zero, giving

w
s

n
w n w sk

k

k
i i

i

i i

i

= ( )
⎛

⎝
⎜

⎞

⎠
⎟

=

∞

=

∞

∑ ∑2

2

1 1

. (27)

The ratio E E∆ rms  is clearly independent of any common scale factor on the wi , so we
simply drop the constant term in brackets.  The si  are in general complex.  The
denominator of E E∆ rms  depends only on the absolute value of the wi , so we are free to
choose their phases to maximize the numerator.  This is accomplished by making each
term entirely real, with

w
s

ni
i

i

=
ˆ

2 , (28)

where ŝi  is the complex conjugate of si .  This will make E a pure cosine sum, and in the
time domain the filtered signal E t( ) will always peak at t = 0.

To get the resulting energy resolution, we must be careful with the normalization of the
Fourier transforms.  We will use the pair

H t h f e df h f H t e dti f t i f t( ) ( ) ( ) ( )= =−

−∞

∞

−∞

∞

∫ ∫2 2π π    and    . (29)

We assume a power input to the detector E P t0 ( ), with Fourier transform

E P t e dt E p fi f t
0

2
0( ) ( )π  

−∞

∞

∫ = . (30)

Using the detector responsivity (15), gives the detector output voltage spectrum
v f E S f p f E s fV( ) ( ) ( ) ( )= =0 0 .  The optimal filter in (28) is ˆ( ) ( )s f e fn

2 , so the filtered
signal becomes v f E s f s f e fnFILT( ) ˆ( ) ( ) ( )= 0

2 .  Transforming this to the time domain,

V t E
s f s f

e f
e df V E

s f

e f
df

n

i f t

n
FILT FILT ,    and    ( )

ˆ( ) ( )
( )

( )
( )

( )
= =−

−∞

∞ ∞

∫ ∫0 2
2

0

2

2
0

0 2π , (31)

where in the second integral we have made use of the fact that s f( )  is the transform of a

real function of t, so s f s f( ) ( )− =
2 2

.  VFILT( )0  is our best estimate of the input signal
amplitude.  (In practice, the filter coefficients might have an arbitrary normalization, and
the energy scale would be determined empirically from events of known energy.)
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The filtered noise is e f s f e f e f s f e fn n n n-FILT( ) ˆ( ) ( ) ( ) ˆ( ) ( )= =2 .  This is uncorrelated at
different frequencies, so we can sum its absolute square and get

V
s f

e f
dfn

n
-FILT
2 =

∞

∫ ( )

( )

2

2
0

, (32)

the mean square fluctuation expected at any time, including t = 0.  We can normalize it to
energy units by dividing by VFILT

2 0( ) from (31) with E0  equal to one energy unit:

∆E

s f

e f
df

s f

e f
df

s f

e f
df

S f p f

e f
df

n

n n

V

n

2

2

2
0

2

2
0

2 2

2
0

2 2

2
0

2

1

4

1

4

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= =

∞

∞ ∞ ∞

∫
∫ ∫ ∫

( )

( )

( )

( )

( )

( )

( ) ( )

( )

. (33)

Assuming the energy in an event is deposited all at once, P t( ) is a delta function at t = 0,
and p f( ) =1.  Using the definition of noise equivalent power as NEP( )f e f S fn V≡ ( ) ( ) ,
the right-most expression in (33) then gives:

∆E
df

rms 2NEP
=
⎛

⎝
⎜

⎞

⎠
⎟

∞ −

∫ 4

0

1 2

. (34)

The assumption of instantaneous energy input is often not a good one, so the more
general form in (33) is also useful.

Figure 9 shows the pulse in Fig. 2c after application of the optimal filter. Note that this

output pulse is a factor of r2 1+  faster than the pulse from the detector in Fig. 2, where
r is the ratio of TFN to Johnson noise at low frequencies discussed in Sect. 2.1.  If
negative electrothermal feedback were used, the pulse from the detector would be much
faster, and the noise spectrum would look quite different, but the output of the optimal
filter would be unchanged.

-1

0

1

-0.002 -0.001 0 0.001 0.002
Time (s)

Fig. 9. Optimally filtered pulse of Fig. 2c.  The r.m.s. noise at the filter 
output is about 0.22.  A noise-free pulse from the same filter is shown by 
the dashed line
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2.5 Optimization of Detector and Operating Conditions

Since (34) shows that the energy resolution depends only on NEP, we will first calculate
the contributions to this by dividing the noise voltage spectral densities derived in
Sect. 2.3 by the responsivity SV  from (15).  The results are summarized in Table 2.

Table 2.  NEP from major noise sources

Definitions:

α ≡
d R

d T

log
log

                    L
P

GT0 ≡
α

                   K
R

R RL
L

L

≡
+

b
R R

R R
KL

L
L≡

−
+

= −2 1               K
bL

i

i bLF ≡
−

⋅
+

+ −( )
1

1
1

1 10 0

ωτ
ωτ

Responsivity (15):

S
L

I i
K KV L Fω

ωτ
( ) =

+
0 1

1
V W (volts watt)

Thermodynamic Fluctuation Noise (from 21):

e k T G t
L

I i
K Kn B L F-TFN LINK V Hz( ) F ( , )ω β

ωτ
= ⋅( ) ⋅

+
4

1
10

2
0

1 2
0

NEP e S k T G tn V BTFN -TFN LINK
2W Hz2 2 2

0
2

04( ) ( ) ( ) F ( , )ω ω ω β≡ = ⋅

Thermistor Johnson Noise (from 22):

e k TR K Kn B L FJ-Therm( )ω = ⋅4

NEP k TP LBJ-Therm
2 ( )ω ω τ= +( )4 1 2 2

0
2

Load Resistor Johnson Noise (from 23):

e k T R
R

R

L

i
K Kn B L L

L
L FJ-Load ( )ω

ωτ
= +

+

⎛

⎝
⎜

⎞

⎠
⎟4 1

1
0

NEP k T P
R

R

L

LB L
L
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2 ( )ω

ω τ
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+( ) +
4

1 0
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0
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Amplifier Noise (from 25):

e e i R
L

i
K Kn nA nA L F-AMP( ) ( ) ( )ω ω ω

ωτ
= + ⋅ +

+

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜
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2
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=
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+
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We first notice that the electrothermal feedback and load resistor loading terms KF  and
KL  have dropped out of the NEP for both TFN and thermometer Johnson noise.  This is
as expected, since any noise sources that appear inside a feedback loop or ahead of it will
be affected by the feedback in exactly the same way as the signal, leaving the signal to

noise ratio and NEP unchanged.  The output of the optimal filter is E s f e fn0

2 2( ) ( ),
which is proportional to the square of the signal to noise ratio, so the shape of the pulses
is also unchanged by feedback.  This means that if RL  is made greater than R  to “turn
on” negative electrothermal feedback, the pulses at the detector will decay faster because
τ e  is shortened, but the pulses at the output of the optimal filter will be unchanged.  On
the other hand, if there is a “knob” that allows α  to be increased with no electrothermal
feedback, the pulses from the detector simply get higher, while at the output of the
optimal filter they will get faster.

The amplifier voltage noise however comes in after the feedback loop and so is
unaffected by it.  The NEP from this then depends inversely on the signal, and so is
improved by positive electrothermal feedback ( KF >1) and made worse by negative
electrothermal feedback ( KF <1) and load resistor loading ( KL <1).  The amplifier
current noise goes in ahead of the loop and is modulated by the feedback, so the Ks  again
cancel out in the NEP.  The same is true of load resistor Johnson noise, which when taken
as a current noise i k T RnJRL B L L

2 4=  is entirely equivalent to inA
2 .  The only dependence on

RL  is in inJRL
2  itself.

Optimization depends on its starting assumptions.  We will assume that there is some
minimum heat sink temperature T0 it is practical to provide, that the detector, due to
constraints on desired volume, available materials, and construction methods has some
minimum heat capacity C0 at this temperature, and that we have a thermometer
technology that offers some maximum sensitivity α .  In this case, our optimization
problem is how to get the best energy resolution for given values of T0, C0, and α .  The
remaining adjustable parameters are G, R, RL, and P, the bias power.  The noise sources
are independent, making the total NEP2 simply the sum of the individual contributions.
NEPTFN

2  and NEPJ-Therm
2  do not depend on R and RL, so we are free to choose these to

minimize the other contributions.  We assume that making R a sufficiently good match to
the noise resistance of the amplifier will make this term negligible, and then choose RL

large enough relative to R  that we can ignore NEPJ-Load
2 .  This leaves

NEP NEP NEPTotal
2

TFN
2

J-Therm
2≈ + , and P and G as our free parameters.

While we have been assuming a small-signal limit, the temperature increase t T T≡ 0
produced by the bias power is not necessarily small, and can cause significant changes in
the heat capacity of the detector and thermal conductivity of the link.  We therefore need
a model for these changes.  We will assume power-law temperature dependences:
G tT G t( )0 0= β , where G G T0 0= ( ), and C tT C t( )0 0= γ .  Fortunately these are fairly accurate
representations for most materials over the required temperature range, with β =1 for
metals, 3 for insulators, 4 for electron-phonon coupling in metals, and ~5 (at least
empirically) for electron-phonon coupling in semiconductors.  Heat capacity scaling is
γ =1 for metals, 3 for insulators, and 0–1 for doped semiconductors.  Magnetic materials
and superconductors have more complicated behavior, but can usually be approximated
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by some power law over the range from T0 to T .  It will be convenient to use t  as a
parameter rather than P , which can now be expressed in terms of t  as:

G T
dP

dT
P dP G T dT G t T dt

G T
t

P

T

T t
( ) ( )= ⇒ = = = =

+
−( )∫ ∫ ∫ +

0 0 01

0 0 1

0 1
1β β

β
. (35)

We use this expression for P  to write L P GT t0
11 1 1≡ ( ) = −( ) +( )+α α ββ .  Substituting

the above and τ γ β≡ = −C G C t G0 0  into the expressions for NEPTFN
2  and NEPJ-Therm

2  from
Table 2, we get

NEP k T G t
t

t
BTotal LINK

2
0
2

0

2 3

2 1
2 24

1

1
1( ) F ( , )ω β

β

α
ω τ

β

β
= [ ] ⋅ +

+( )
−( )

+( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+

+
. (36)

This is readily integrated in (34) to give the expected energy resolution:

 ∆E k T C
t

t

t t

t
t k T CB BRMS
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+
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⎛
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⎜
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+
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2 1

2 1
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0
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0

4 1

1
1

1

1

β

α

α β

β
ξ α β γ

γ

β

β

β

F ( , )
( , , , ) . (37)

Note that G, the thermal conductivity of the link, does not appear in this expression,
although its temperature dependence does.  This means that we are free to choose G to
give any desired time constant (but see Sects. 2.8 and 2.10 for limits to the validity of this
statement for real detectors and thermometers).  We can see that for α  sufficiently large

to neglect the 1 under the radical, ∆E k T CB∝ 0
2

0 α .

We have only the bias power available for optimization, so we insert the appropriate
function for FLINK, which would be from (18) for a hot-electron device or one with a very
specular conducting link and from (19) for a perfectly diffusive link, and adjust t to
minimize ξ .  Figure 10 shows the variation of ξ  with t for various values of α , β , and
γ .  The dependence of ξmin  on β  and γ  is weak, although γ  significantly affects the
optimum value of t.  Figure 2 of [5] gives topt  and ξmin  as functions of α  for some values
of β  and γ .

For power detectors, the figure of merit is NEP rather than ∆E , and the form of (36)
makes it appear that this depends on G  rather than C .  Mather, however, argues in [11]
that the proper figure of merit is always the NEP at some chosen frequency ω , and writes
NEP k T C t g qB

2
0
2

04( ) f( , , , , , )ω ω α β γ= [ ] ⋅ , where g  and q  are respectively the normalized

link conductivity and background power.  Conductivity is assumed to be a free
parameter, so f  can be minimized with respect to both t and g.  The NEP optimized for
any given frequency then has qualitatively the same dependences as ∆E , with f ∝ −α 1 2

for sufficiently large α .

2.6 Complex Load Impedance

The derivations above do not require that the load resistance, RL , be real and we are free
to include intentional or stray capacitive and inductive effects in its value.  With the bias
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circuit of Fig. 4a, the high end of the load resistor is fixed, and capacitance in parallel
with the detector is equivalent to a parallel capacitance on the load resistor and can be
accounted for in this fashion.  This is not true when a time varying signal is applied to the
top of the load resistor (as in Sect. 2.7 below).  In this case, and to handle an inductor in
series with the detector, it would be necessary to redo the analysis to explicitly include
these components (but see Sect. 2.9).  For high impedance thermometers, such as doped
semiconductors, stray capacitance effects usually dominate, while for very low
impedance thermometers such as superconducting TES, only stray inductance is normally
important.

2.7 External electrothermal feedback

The practical advantages of electrothermal feedback, and particularly of large amounts of
negative ETF, were discussed above and will come up again in Sect. 3.  Large feedback
effects require the absolute value of the loop gain, β ωA bL i t= +( )0 1 , to be >>1 at low
frequencies.  For RL > 0, b R R R RL L≡ −( ) +( ) will always lie between –1 and +1, so this
would normally require L0 1>> , which can only be obtained with extremely sensitive
thermometers.

Fig. 10. Normalized energy resolution as a function of the temperature increase
t T T− =1 0∆ Bias  produced by bias power.  The effective link temperature
function FLINK appropriate for radiative transfer was used, but the result is not
appreciably different for the diffuse scattering case.
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It is possible however to get arbitrarily large feedback effects with low-α  thermometers
by using the gain of the electronic amplifier.  Suppose the thermometer voltage V is
amplified by a factor λ  and then added to the bias supply voltage VB  at the top of RL .
We can then write the current as I V V V RB L= + −( )λ , and dI dV RL= −( )λ 1 .  All of
the equations derived in Sect. 2 depend on RL  only through dI dV , so we take this
external feedback into account simply by substituting an effective value of RL  equal to
RL 1−( )λ  for all occurrences of RL  in KF  and KL  (the explicit appearance of RL  in the
expression for load resistor Johnson noise is only to give the magnitude of the Johnson
noise current source i k T RnJRL B L L= 4 , which is not affected by feedback).  In particular
the expression for b will have a zero in the denominator for λ = +( )R R RL , so b and βA
can become arbitrarily large positive or negative with λ  sufficiently close to this critical
value.

All of the equations derived above are then valid for this situation with the exception of
the one for amplifier voltage noise.  Since the amplifier noise is now inside the feedback
loop, it is also modified by the feedback, and in principle one can get the benefits of
negative ETF without the potentially adverse effect on NEPAMP  produced by intrinsic
negative ETF.  Of course, improvements in NEPJ Therm−  and energy resolution depend on
L0  and not on the feedback, and come only from increasing the thermometer sensitivity.
Also, when b is large it becomes very sensitive to changes in R, so problems with
stability in the face of large signals or changing background power will limit the practical
amount of external feedback.

2.8 Thermometer nonlinearities

Up to this point we have assumed that the thermometer resistance depends only on T, i.e.
R R T= ( ).  More generally, R R T V= ( , ).  This behavior is normally referred to as
“nonlinearity”, since it makes ohm’s law a nonlinear equation.  For small signals,
however, it can be linearized around the operating point and characterized by the two
partial derivatives

α
∂
∂V

V

R

T
≡

⎞

⎠
⎟

log
log

  and  β
∂
∂V

T

R

V
≡

⎞

⎠
⎟

log
log

. (38)

The following chapters discuss specifics of the nonlinear behavior for the most common
types of resistive thermometers.  It is straightforward however to incorporate the
linearized form into the relations derived so far.  This was first done for SV ( )ω  and Z( )ω
by Mather [13].

For example, to re-derive the D.C. response in (8) from (2), we must find dR dT  when
R R T V= ( , ).  We can write

dR
R

T
dT

R

V
dV

V T

=
⎞

⎠
⎟ +

⎞

⎠
⎟

∂
∂

∂
∂

  ⇒   
dR

dT

R

T

R

V

dV

dR

dR

dTV V= +α β . (39)
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Using dV dR from (3), this can be solved for dR dT :

dR

dT

R

T

R

R RV V
L

L

= ⋅ −
+

⎛

⎝
⎜

⎞

⎠
⎟

−

α β1
1

. (40)

Substituting this into (2) with the other terms the same as for (8) gives

dV

dP

L

I i K
K

in

V

L V
L=

+( )
⋅

−( )1
1

1ωτ β
, (41)

where we have changed the subscript on L0  as a reminder that it is now L P GTV V≡α .
Next, we can easily compute the changes to the loop gain βA  that controls feedback
effects, since β  from (10) remains the same, and the gain A  in (41) differs from (8) only
by the additional term 1 1−( )KL Vβ .  (Note that the feedback factor β  is unrelated to βV .)
If we still want to write βA  as b LV V , then b  must be modified to b b KV L V= −( )1 β .  As
βV  is usually negative, the new term is degenerative and can significantly reduce both
gain and the effects of feedback.

This process can be continued for the response to major noise sources with the results
shown in Table 3.  Note that the responsivity and major noise terms all include the added
factor of 1 1−( )KL V V- β  and the modified KF V- .  These will therefore cancel out in the
NEP calculation, leaving this and the energy resolution unchanged.  A reservation must
be made about this regarding thermistor Johnson noise.  Johnson noise and the
nonlinearity are both internal to the thermistor.  The result in (45) was derived assuming
that the Johnson noise voltage modulated its own resistance, but the physics behind the
nonlinearity is unspecified and it is not obvious that this should always be the case.

2.9 Voltage Output vs Current Output

We have pointed several advantages of negative electrothermal feedback, and one often
wishes to maximize it.  Since the feedback factor is 1 1 0−( )bL , we then want bL0

negative and as large as possible.  For α < 0 , L0  is negative, so we need
b R R R RL L= −( ) +( ) close to +1.  This is readily done by making R RL >> , since this
also minimizes its loading effects ( KL ≈ 1) and its Johnson noise contribution to the NEP.
However, for positive temperature coefficient thermometers, we want b close to –1, and
this requires R RL << .  We would then have significant load resistor Johnson noise, and
the signal level would be reduced to a point where amplifier noise is important.

The obvious solution in the latter situation is to switch to using the current through the
thermistor rather than the voltage across it as the output signal.  Signal loading effects are
then minimized for R RL << , and it is easily shown that this condition also makes load
resistor Johnson noise insignificant.

Rather than re-derive all of the relations in Sect. 2 for current output, we can make use of
the simple dual circuit transformation to change them to this form.  This allows us to
switch all of the V’s for I’s (and I’s for V’s) if accompanied by the other substitutions
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Table 3.  Response with thermometer nonlinearity: R R T V= ( , )

Definitions:

α
∂
∂V

V

R

T
≡

⎞

⎠
⎟

log
log

      β
∂
∂V

T

R

V
≡

⎞

⎠
⎟

log
log

       L
P

GTV
V≡

α
     K

R

R RL V
L

L
- ≡

+

b
R R

R RV
L

L V

≡
−

−( ) +1 β
       K

b L

i

i b LF V
V V V V

- ≡
−

⋅
+

+ −( )
1

1
1

1 1
ωτ

ωτ

Responsivity:

S
L

I K i
K KV

V

L V V
L V F Vω

β ωτ
( ) =

−( )
⋅

+1
1

1-
- -      (42)

Impedance:

Z
dV

dI

i L

i L
RV

V V

( )ω
ωτ

ωτ β
≡ =

+( ) +

+( ) −( )−
⋅

1

1 1
     (43)

Thermodynamic Fluctuation Noise:

e k T G t
L

I K i
K Kn B

V

L V V
L V F V-TFN LINK

-
- -( ) F ( , )ω β

β ωτ
= ⋅( )

−( )
⋅

+
4

1
1
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2

0

1 2
     (44)

Thermistor Johnson Noise:

e k TR
K

K Kn B
L V V

L V F VJ-Therm
-

- -( )ω
β

=
−( )

4
1

1
     (45)

Load Resistor Johnson Noise:

e k T R
R

R

L

i K
K Kn B L L

L

V

L V V
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⎛

⎝
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⎞
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     (46)

Amplifier Noise:

e e i
R

K

L

i
K Kn nA nA

L V V

V
L V F V-AMP

-
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⎛
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⎞
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⎟

⎛

⎝
⎜

⎞

⎠
⎟2 2

2

1
1

1
     (47)

given in Table 4.  It will also work for more complicated circuits that incorporate stray
capacitance and inductance.  The circuit transformation is usually obvious in our simple
cases.  If the effects of voltage amplifier parallel input capacitance have been included,
for instance, this would just become the series inductance of the current amplifier input in
the transformed equation.  For more complex circuits, one should consult the full
algorithm for the transformation under “Duality” in a suitable textbook [14].
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Table 4.  Dual circuit transformations

V I (across a component)  (through transformed component)→

I V (through a component)  (across transformed component)→

R R (resistance)  (conductance)→ 1

C L (parallel)  (series)→

L C (series)  (parallel)→

The results for all the formulae of this section are given in Table 5.  Only the versions
including thermistor nonlinearity are given; to recover the linear form, set βI = 0.
Nonlinear thermistors are characterized by partial derivatives of R T I( , ) rather than
R T V( , ).  The NEP contributions from TFN and thermistor Johnson noise are unchanged.
Those from the load resistor and amplifier are given in the table.  These and other useful
current-output formulae are derived directly in [15].

2.10 Complications

The detector of Fig. 1, where the absorber, thermometer, and structure are regarded as a
single isothermal entity, is clearly an idealization, as is the supposition that deposited
energy in an event is instantaneously in equilibrium in all available channels.  In this
section we discuss the effects of some of the more important complications.

Internal time constants and internal fluctuation noise.  A detector can more reasonably
be modeled as separate components: a thermometer, an absorber, and perhaps some
structure, connected by thermal resistances.  In addition, any component with more than
one channel for energy content, such as a metal with both lattice phonons and conduction
electrons, should be modeled as two or more parts with their own heat capacities
connected by appropriate thermal conductances.  This has two potentially major effects,
which we illustrate by a simple (but realistic) example where the energy-absorbing part
of the detector has a finite thermal conductivity, GA , to the rest of the detector, including
the thermometer.  When an event deposits energy in the absorber, the thermometer
temperature will have a finite risetime, limited by GA  and the heat capacities of the
absorber and thermometer.  The qualitative effect of this is apparent by looking at
Fig. 2b.  A better quantitative impression can be obtained from Fig. 3, where GA

introduces another pole in the signal response.  Above the frequency of this second pole,
the signal to TFN ratio, which is otherwise completely independent of frequency, will
start to drop as 1 f .  This is the same effect that otherwise occurs above the frequency
where the TFN drops below the level of the Johnson noise, so it will not seriously impact
the energy resolution if the new pole is at a considerably higher frequency than this
crossing point.  The crossing, where (21) and (22) are equal, is at ~α 4  times the
frequency of the main pole of the signal, so this is an increasingly stringent requirement
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Table 5.  Equations for current output with R R T I= ( , )

   Dual Transforms and Definitions:
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   Admittance – from (43):

A
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dV
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i L R
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   Thermodynamic Fluctuation Noise – from (44):
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   Thermistor Johnson Noise – from (45):
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   Load Resistor Johnson Noise – from (46):
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   Amplifier Noise – from (47):
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as the thermometer sensitivity becomes very high.  Put another way, to get the
improvement in energy resolution expected from an increase in thermometer sensitivity,
you must ensure that internal time constants in the detector are of order α  times shorter
than the main detector time constant.

The second detrimental effect is that random exchange of energy between parts of the
detector can produce additional thermodynamic fluctuation noise.  This “internal TFN” is
another term that must be added to the total NEP.  Reference [9] derives the proper
equations for a few models of detector internal structure that are reasonable
representations of some real detectors.  These include both the altered frequency response
to signals and the internal TFN.  A general approach is outlined that allows algebraic
equations to be derived for other internal structures, but these quickly become unwieldy.
A general matrix method is demonstrated in [15] that allows numerical solutions to be
obtained for very complex structures.

There is one additional effect of internal thermal resistances.  If the thermometer itself is
isolated from the rest of the detector, as for instance by the electron-phonon coupling in a
thermistor where the resistance depends on the electron temperature, then the bias power
dissipated in the thermistor will create a temperature drop across the coupling resistance.
If the temperature coefficient β  is large, and it is 4 – 5 for electron-lattice coupling, then
as this temperature drop increases the thermometer temperature quickly becomes
insensitive to the external temperature.  This loss of effective thermometer sensitivity is a
particularly severe problem for doped semiconductor thermistors, as discussed in the next
chapter.  Models worked out in [10] include this effect, as well as the increased Johnson
noise, additional internal TFN, and loss of high frequency signal response that go with it.

Thermalization noise.  We have been assuming that all of the event energy comes
instantaneously into equilibrium with at least the absorber portion of the detector.  It is
possible however for part of the energy to go into a channel that is so weakly coupled
with the others that it takes a significant length of time to come into equilibrium with
them.  For example, when an X-ray photon is absorbed in a semiconductor about one-
third of the energy initially goes into producing electron-hole pairs.  At low temperatures,
these are mostly trapped on impurity sites, and recombinations that return this energy to
the phonon system can be very long.  If the equilibration time is not short compared with
τ α , then it will have an effect on detector performance.

There are three forms of such effects.  The first is simply due to part of the energy being
completely lost, or slowed in delivery relative to the main thermal time constant so that it
is measured with poorer signal to noise ratio.  These change the optimal filter and the
energy scale to make the resolution worse, but are still independent of event energy.  This
would not usually be regarded as thermalization “noise”, although it involves a loss of
resolution related to thermalization processes.  To some extent it is completely
unavoidable: thermalization in a phonon system cannot be faster than the sound crossing
time of the detector, for instance.  For effects like this where the time is not too long, the
solution is to slow the detector by making G smaller, increasing τ  until τ α  is at least
comparable to the thermalization time.  Twerenbold [16] includes a basic discussion of
the physics involved in this process.
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The other forms of thermalization effects are ones that vary from one event to the next.
The variations can be either statistical, such as the Fano fluctuations in the fraction of
energy going into ionization, or position-dependent.  Position dependence can come from
detector geometry or from local variations in a parameter like defect density.  This kind
of “noise” generally causes a loss of energy resolution that is proportional to the event
energy.  Position dependence produced by variations in the energy collection time can be
reduced by making the detector slower if the application allows it, or by altering the
filtering to compromise between signal-to-noise ratio and insensitivity to risetime.

3 Limitations of Linear Theory

The linear theory of Sect. 2 is simple and allows many useful generalizations, but the
unfortunate truth is that many thermal detectors, particularly the small ones applied to
high-resolution X-ray measurements, are often run well into the nonlinear regime.  As
shown in (37), the fundamental parameters determining energy resolution are the bath
temperature and detector heat capacity, and it is technologically practical to make
detectors for soft X rays with such small heat capacities that ∆T  is a substantial fraction
of T0  when a photon is absorbed.  (Detectors for higher energy photons and other things
with small cross sections usually require such a massive absorber than nonlinearity is not
a problem).  All the thermodynamic parameters tend to change rapidly with temperature,
and thermometer characteristics can be the worst offender.  The very sensitive and
promising superconducting transition edge sensor (TES) represents the extreme case.  Its
resistance can go from zero to the full normal value with less than 1% temperature
change.  Within this range, α  is changing rapidly, and outside of it the thermometer is
completely saturated.  Modest amounts of nonlinearity can be handled simply by careful
calibration of the pulse height vs. energy relation.  However, significant increases in
temperature will change the noise characteristics during the pulse, leading to correlations
between the noise at different frequencies and invalidating the optimal filter as calculated
in Sect. 2.4.

One standard way of handling this is to increase the heat capacity of the detector until the
nonlinearity is acceptable for the highest event energy of interest, EMAX.  This has the
interesting consequence that the energy resolution becomes independent of thermometer
sensitivity.  If the width of the superconducting-to-normal transition is narrowed, α  is
approximately proportional to the inverse of the width, and the heat capacity must be
similarly increased to keep the event within the same part of the transition.  The energy
resolution, which scales approximately as C α( )1 2 , is unchanged by this, but is now

proportional to EMAX
1 2 .  There is still a major benefit to increasing α , however.  Since C  is

to be increased above the minimum technologically feasible value, this extra “budget”
allows a wider choice of materials to be used for constructing the detector that can
provide faster and more complete thermalization or better thermal contact.  This makes
the detector a better approximation of an ideal device, particularly if short time constants
are desired.

Fixsen et al. [17,18] have taken another approach and developed an optimal filtering
algorithm that properly accounts for the noise correlations between frequencies.  They
find that for any amount of nonlinearity, including complete saturation of the TES, the
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resulting resolution is no worse than it would have been had C been increased to lessen
the nonlinear effects.  This is a very important result, since it means that much better
resolution can be obtained at all lower energies with the same detector.  The signal
processing is more complex, but could be worthwhile for an application that covers a
wide range of event energies.  Some of these authors have proposed that the best design
would be to choose a C that just starts to saturate completely at EMAX.  This is at least a
factor of three lower heat capacity than would normally be required to keep nonlinearity
to a moderate level, and results in a significant resolution improvement at low energies.
Heat capacity could be reduced still further without hurting the resolution at EMAX, but
with the detector fully saturated there is no way to detect an accidental additional event
that adds to the total energy.  Somewhat below saturation, the pulse shape distortion
produced by the pileup can still be detected and used to reject the event.  For applications
where the best energy resolution over a very wide dynamic range is important, it might
also be practical to include a second thermometer with lower sensitivity for the sole
purpose of detecting pileup while the main thermometer is saturated.

Up to this point, we have been considering isolated events, but the large nonlinearities of
thermal detectors can make pileup a much more severe problem than it is in the usually
rather linear ionization detectors.  For the small-signal linear case, pileup considerations
are the same as they are for charge detectors.  The only thing that matters is the output of
the filter, and with a sensitive thermometer the signal-to-noise ratio is good at frequencies
far above the thermal corner at f G Cc = ( )2π .  Therefore even the optimal filter can show

little pileup at event separations much smaller than the thermal time constant, and other
filters can be used that allow even higher rates with some compromise in energy
resolution.

For pulses big enough to show nonlinear effects, however, a second event that arrives
before the detector has actually cooled sufficiently will show a different response than the
first event.  For large events, this could require several thermal time constants.  Here
negative electrothermal feedback, either intrinsic or external, can make a big difference.
As can be seen in (15), feedback will speed the actual cooling rate by a factor of 1 0−( )bL ,

allowing counting rates to increase by a similar amount before pileup effects become
important.  This points out a drawback of the scheme proposed above where large events
are allowed to completely saturate the thermometer, since feedback then quits operating
and thermal recovery times become much longer.  How serious this is depends on the
application.  For many astronomical observations, for instance, the rate of high energy
events is very small compared to that at lower energies, so the increased deadtime from
these might be a small price to pay for significantly improved resolution at low energies.

4 Other Thermometer Types

There are many other potential thermometer systems.  Besides the reactive analogs of
thermistors ( L T( ) and C T( )), we have pyro-electric (V T( ) ) and paramagnetic ( M T( ))
devices.  Any temperature-dependent physical parameter that can be measured is a
potential thermometer, but the only one I know of in addition to the above list that has
been used for low temperature detectors is the tunneling current of an NIS junction.  It
would be handy to make some grand synthesis of all thermometer types so they could be
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compared directly, but in practice qualitative and quantitative differences in the operation
change the approximations that can be used and often require entirely different figures of
merit.  The only universal quantity is the thermodynamic fluctuation noise.  As we have
seen, this does not itself limit the energy resolution, but it does set a scale where the
resolution is proportional to the square root of the bandwidth over which the signal to
noise ratio is approximately constant.  This frequency range is where TFN is the
dominant noise source and the signal frequency response is dominated by the same
thermal time constant that determines the TFN spectrum.  For resistive thermometers, the
Johnson noise provided a fundamental and in most cases attainable limit to how large this
bandwidth could be.  For other thermometer types, the Johnson noise may be negligible,
and some other noise source or attenuation of the signal frequency response will become
the limiting factor.

The reactive thermometers appear to be much like thermistors.  They have an output that
depends on both their sensitivity α ≡ d X d Tlog log  and the bias current, but the
dissipation is only 1 Q of an equivalent resistive element.  Here Q is the standard
“Quality Factor” for a reactive element, among whose equivalent definitions is
Q ≡ (energy stored energy per cycle)/(energy dissipated per cycle).  The optimum bias
current is therefore increased by Q1 2  and the Johnson noise is reduced by Q1 2 .  This
improves the TFN to Johnson noise ratio by a factor of Q, so we should be able to define
an effective sensitivity “ ”α αEff ≡ ⋅Q  and take over most of the thermistor results.
Although most of these devices have relatively low α’s, available Q’s can be very high
(often 105–106).  Unfortunately, something else usually dominates the noise or the signal
has another pole before the TFN drops below the level of the Johnson noise.  In these
cases αEff  is not a good figure of merit, and the optimization will probably look quite
different than it does for a resistive thermometer.  So each of these new thermometer
types must be analyzed individually, at least until it is determined whether it is amplifier
noise, internal time constants, or both, or something entirely different, that dominates the
behavior.  The result for the optimal filter, at least in the form of (33), should be generally
applicable for any detector in the small-signal limit.

4.1 Kinetic Inductance

The kinetic inductance thermometer uses the steep temperature variation in magnetic
penetration depth in a superconductor just below its transition temperature to modulate
the inductance of a nearby coil [19,20].  Usually an insulating film is deposited on top of
a thin superconducting plane, and the coil is deposited on top of that.  The detector is well
matched to a SQUID amplifier, and in principle could be very sensitive, with Q values
close to 106.  Versions have recently been proposed that construct an array of pixels with
resonators of different frequencies, allowing the entire array to be read out in parallel
with multi-frequency microwave excitation.  This requires no physical connections to the
detector array, and puts almost all of the readout electronics at room temperature [21].
Detectors of this type developed thus far operate far from equilibrium.
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4.2 Magnetic

The net magnetization of a system of spins of moment µ  in a magnetic field depends on
temperature as tanh( )µB kT .  The spin system must be made dilute enough to avoid
strong spin-spin interactions, which severely limits the sensitivity per unit volume.
However, tiny changes in magnetization can sensed with a pickup coil and SQUID
amplifier, and no excitation is required.  This means that only third-order effects produce
dissipation from the readout system, and the power input can be tiny [22].  The system
has almost no intrinsic Johnson noise, so the useful bandwidth is limited instead by some
combination of the amplifier noise, internal thermodynamic fluctuation noise, and
internal coupling times that drop off the signal relative to the TFN at high frequencies.

With a magnetic thermometer, the signal amplitude is approximately proportional to the
thermometer volume.  When the amplifier noise dominates, an optimum design will then
enlarge the thermometer until its heat capacity is equal to that of the rest of the detector.
This changes the scaling of energy resolution vs. absorber C, and makes signal level per
unit heat capacity an important figure of merit for the thermometer.  If the amplifier and
its coupling to the field are good enough, the limiting factor will be the internal TFN and
signal roll-off due to internal time constants.  The most fundamental of these is the
coupling time between the spin system and the lattice, which for high resolution should
be much smaller than the detector time constant.  The very small power dissipation would
allow small values for G and large thermal time constants, but application requirements
and technical feasibility put a limit on this, so another fundamental figure of merit for
magnetic thermometers is the spin-lattice relaxation time.  This is normally quite long in
dielectric materials, so metallic systems are favored.  As different aspects of these
detectors are improved, the optimization and figures of merit will change.

Magnetic thermometers have received much less attention than thermistors up to this
point, but they have recently attained resolution levels comparable to the best thermistor
results [23].  Since their different optimization gives them additional advantages in
certain applications, they now appear very promising and are discussed in much more
detail in a subsequent chapter in this volume.

4.3 NIS junctions

These are tunnel junctions with a superconductor on one side and a normal metal on the
other.  They are biased so that only electrons in the high-energy tail of the thermal
distribution in the normal metal can tunnel, making the tunneling current extremely
sensitive to temperature [24].  These devices can also be designed to refrigerate
themselves, and there is some interest in using them as “microcoolers” for other
detectors [25].

4.4 Pyro-electric

Like the magnetic thermometer, this sensor requires no excitation.  For an all-metallic
system, it should be possible to make an extremely fast detector.  The figures of merit and
optimization are quite different from most other sensors, which leads to the possibility
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that there are applications for which it might have an advantage.  However its basic
properties do not seem to favor it for very high energy resolution [26].
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