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Enhanced parametric processes in binary metamaterials
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We suggest double-resonant (binary) metamaterials composed of two types of magnetic resonant
elements, and demonstrate that in the nonlinear regime such metamaterials provide unique possi-
bilities for phase-matched parametric interaction and enhanced second-harmonic generation.
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Extensive studies of microwave properties of compos-
ite metallic structures led to the experimental demon-
stration of left-handed metamaterials [1] suggested long
time ago [2]. Such metamaterials are created by reso-
nant magnetic elements and operate for the wavelengths
much larger than the period, allowing for the macroscopic
effective medium description. The parameters of the ef-
fective medium depend on the microscopic structure of
the metallic composites. Moreover, nonlinear response of
the metamaterial can become substantial [3–5], and their
transmission characteristics can be effectively controlled
by external fields [6–8].
Nonlinearities of metamaterials suggest their novel ap-

plications such as frequency conversion [5, 9], tunable
transmission [8], second-harmonic imaging [10], nonlin-
ear beam focusing and soliton propagation [11], etc. In
contrast to nonlinear optical media, composite metama-
terials possess nonlinear magnetic response that can be
engineered by inserting nonlinear elements (e.g., diodes)
into the resonant conductive elements [3, 4].
In this Letter we suggest a novel type of composite

metamaterials with double-resonant response and demon-
strate that in the nonlinear regime such binary meta-
materials are ideally suited for the first observation of
the enhanced phase-matched parametric interaction and
second-harmonic generation. Indeed, the quadratic non-
linear magnetic susceptibility is proportional to a prod-
uct of linear magnetic susceptibilities at the frequencies
of interacting waves. For conventional single-resonant
nonlinear metamaterials, the magnetic susceptibility of
the fundamental wave is relatively large, since it corre-
sponds to the backward wave near the resonance [9] while
the susceptibility of the second-harmonic wave is rather
small. In the metamaterial with several resonances, it
is possible to enhance the nonlinear response, so that
both linear susceptibilities of interacting waves can be-
come large.
To create a double-resonant metamaterial we sug-

gest to mix two types of resonant conductive elements
(RCEs) with different resonant frequencies [12], as shown
schematically in Fig. 1 for the structure consisting of
two lattices of different split-ring resonators. First, we
study linear properties of the binary metamaterials. For
large wavelengths, each RCE can be described as a res-
onant circuit (see, e.g., [13, 14]) characterized by self-
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FIG. 1: Schematic structure of binary metamaterials with
resonant magnetic elements of two types (black and gray).

inductance L, capacitance C, and resistance R. We as-
sume that the metamaterial consists of two types of RCEs
of the same shape (i.e., with the same L and R), but with
different capacitances C1 and C2, and, thus, different res-
onant frequencies.
External homogeneous magnetic field H0 applied per-

pendicular to the RCE planes and oscillating with the
frequency ω induces the currents I1 and I2 in the res-
onators of the corresponding type, which can be found
from the impedance matrix equation:

E = Z1,2 I1,2 + Ξ I2,1 (1)

where Z1,2 = Z
(0)
1,2 − iωL11 and Ξ = −iωL12, E =

iµ0ωSH0 is the electromotive force, S is the RCE area,
Z0
α (ω) = −iωL + i (ωCα)

−1
+ R is the self-impedance

of an RCE of the type α, Nα denotes the set of RCE
position indices of the type α, and Mn′n are the mutual
inductances. The effective inductances are

L11 =
∑

n,n′∈N1,
n′ 6=n

Mn′n ; L12 =
∑

n∈N1,
n′∈N2,

Mn′n, (2)

Solving the set of Eqs. (1) with respect to the currents,
we obtain the magnetization of the metamaterial:

M =
1

2
nS (I1 + I2) = nS2µ0K H0, (3)

where K = iω (Z1 + Z2 − 2Ξ) /2
(

Z1Z2 − Ξ2
)

, and n =

(a2b)−1 is the total volume density of RCEs. Using the
general relation for magnetic induction of media in the
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FIG. 2: (a) Real (solid) and imaginary (dashed) parts of mag-
netic permeability of the binary metamaterial. (b) Spectrum
of electromagnetic waves. Arrows show the perfectly phase-
matched second-harmonic generation.

external field, B = µ0 (H0 + 2/3M) (see Ref. [13] for
details) and definition of the magnetic susceptibility χ,
M = χH , we calculate the magnetic permeability µ,

µ (ω) = 1 + χ = 1 +
µ0nS

2

K−1 − µ0nS2/3
. (4)

In the case C1 = C2, the result (4) reduces to that ob-
tained previously for single-resonant structures [13].
In Fig. 2(a), we plot the permeability vs. frequency

for typical parameters: RCE radius r0 = 2mm, wire
thickness l = 0.1 mm, which gives self-inductance L =
8.36 nHn (see [13]). To obtain RCEs of the type 1
with the resonant frequency of ω01 = 6π · 109rad/s
(ν0 = 3GHz), we take C1 = 0.34 pF. The resonance
frequency of the type 2 RCEs is chosen as ω02 = Xω01

with X = 1.75, i.e., C2 = C1/X
2. The lattice constants

are a = 2.1r0 and b = 0.5r0. The RCE quality factor,
Q = ω01L/R, can reach the values up to 103 [1]. How-
ever, by inserting diodes this value may decrease, and
therefore we take Q = 300.
Figure 2(a) confirms that indeed in such structures

there exist two resonances and two frequency ranges with
negative magnetic permeability. Positions of the macro-
scopic resonances are shifted from the resonant frequen-
cies of individual RCEs; the shift is not the same for
two resonances, and the resulting ratio of the resonant
frequencies is about 2.17.
Nonlinear metamaterials can be created by inserting

nonlinear elements. In order to obtain a material with
low resistive losses, it is preferable using variable capac-
itance insertions, varactor diodes [3]. We assume that
the capacitance of RCEs (both linear and nonlinear) is
determined by varactors, and the difference between two
types of resonators arises due to different varactors.
A general expression for the voltage drop on a varactor

can be written in the form [5, 6]

U(t) = I(t)Rins [U(t)] +
1

Cins [U(t)]

t
∫

−∞

I(t′) dt′, (5)

and it can be simplified in the limit of low current
and low voltage. We assume that resistance is con-
stant, while capacitance can be expanded into Taylor se-
ries, Cins (U) ≃ C (1 + γU). The corresponding solution

of Eq. (5) gives a linear capacitive contribution to the
impedance as well as weak quadratic nonlinearity.
For the three-wave parametric processes, we write

Iα (t) =
∑3

ν=1 Iα (ων) exp (−iωνt) + c.c., ω1 = ω2 + ω3,
and the nonlinear analogue of Eq. (1) takes the form:

E (ω1) = Z1,2 (ω1,2) I1,2 (ω1,2) + Ξ (ω1,2) I2,1 (ω1,2)+
γ1,2

C2
1,2ω2ω3

I1,2 (ω2) I1,2 (ω3) . (6)

Since the nonlinear part of the capacitance is much
smaller than the linear one, we apply an iterative pro-
cedure and use linear currents calculating nonlinear con-
tribution to obtain

χ(2) (ω1;ω2, ω3) =
4 i χ (ω1)χ (ω2)χ (ω3)

µ0S3n2ω1ω2ω3
×

∑

α

γα
C2

α

Aα (ω1)Aα (ω2)Aα (ω3) , (7)

where

A1,2 (ω) =
Z2,1 (ω)− Ξ (ω)

Z1 (ω) + Z2 (ω)− 2Ξ (ω)
, (8)

characterize the relative contribution from the currents,
I1 (ω) and I2 (ω), to the total magnetization of the meta-
material, and A1 + A2 = 1. In the limit of identical
varactors in both sublattices, i.e., C1 = C2 and γ1 = γ2,
Eq. (7) coincides with the results obtained in Ref. [3].
We note that zeros of the denominator in Eq. (8) are

canceled out by zeros of linear susceptibility in numera-
tor and they do not lead to any increase of the nonlinear
response. At the same time, the resonant poles of the lin-
ear magnetic susceptibilities in Eq. (7) lead to a dramatic
increase of nonlinear interaction when the wave frequen-
cies approach resonances. Clearly, the effect is stronger
when all the waves are close to magnetic resonances of
the metamaterial. Therefore, the binary metamaterial
provides an unique possibility for realizing this general
concept, as we show below for the example of SHG.
As has been shown recently [9], SHG in the media with

negative refraction differs from the conventional scheme.
In particular, it is possible to satisfy the phase-matching
conditions for counter-propagating waves. As a result,
a semi-infinite sample of a nonlinear quadratic metama-
terial operates as a frequency converting mirror reflect-
ing radiation with the double frequency of the incident
wave. Remarkably, in the lossless regime the conversion
efficiency is close to 100%. In a more realistic case of
a finite-size metamaterial slab, high efficiency is possible
for the slabs of several tens of wavelengths.
For the double-resonant medium, first we analyze the

spectrum of electromagnetic waves, ω(k). We consider
the waves with the magnetic field perpendicular to the
planes of resonators and assume that the electric com-
ponent of the metamaterial generates a plasma-like di-
electric response, ε (ω) = 1 − ω2

p/ω
2, where the plasma

frequency ωp = 1.2ω0 is selected between two magnetic
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resonances. The wave spectrum has three branches, as
shown in Fig. 2(b). Two branches, which are close to
the magnetic resonances, correspond to large wavenum-
bers. Importantly, we can find the points of the ex-
act phase-matching between fundamental and second-
harmonic waves, for both waves close to the resonances.
We consider the case of normal incident wave propa-

gating along z-axis, and present the magnetic field inside
the sample using slowly varying amplitudes:

H (z, t) = a+1 (z)e
−ikz−iωt + a+2 (z)e

−2ikz−2iωt+

a−1 (z)e
ikz−iωt + a−2 (z)e

2ikz−2iωt + c.c., (9)

where k = ω/c
√

ε(ω)µ′(ω) (as usual µ = µ′ + iµ′′), the
phase mismatch ∆ = ε(ω)µ′(ω)−ε(2ω)µ′(2ω) is assumed
to be small. The coupled-mode equations for the ampli-
tudes a+1 and a+2 are written in the form

da+1
dζ

+ κ1a
+
1 = iσ1a

+
2 a

+
1

∗
,

da+2
dζ

+ κ2a
+
2 = −iσ2a

+
1

2
a+1

∗
, (10)

where we use the notations κ1 = µ′′(ω)ε(ω)
1/2

/2µ′(ω)
1/2

,

κ2 = [i∆− ε(2ω)µ′′(2ω)] [ε(ω)µ′(ω)]
−1/2

,

σ1 = 0.5 [ε(ω)/µ′(ω)]
1/2

χ(2)(ω; 2ω,−ω), σ2 =

ε(2ω) [µ′(ω)ε(ω)]
−1/2

χ(2)(2ω;ω, ω), and ζ = ωz/c
is the dimensionless coordinate. Equations for the am-
plitudes a−1 and a−2 are the same as equations for a+1 and
a+2 , except the opposite signs of the spatial derivatives.
We solve these equations numerically with appropriate
boundary conditions and obtain the dependence of the
SH reflection coefficient, i.e., the ratio of the reflected
energy flux of the SH to the incident wave, as a function
of the ratio of the two resonant frequencies X , shown in
Fig. 3(a) for three slab thicknesses. Calculating results
shown in Fig. 3(a), we were adjusting the frequency
of the incident wave to satisfy the phase-matching
conditions. Large X correspond to non-resonant limit,
when the SH field is not in resonance. Decreasing X
we drive both FF and SH waves closer to the magnetic
resonances, and the conversion rate increases. At the

same time, losses become stronger, and finally they
dominate suppressing SHG efficiency. For small relative
shifts (below X = 1.75), the phase matching cannot be
archived. The incident field amplitude and nonlinear
coefficients α1 = α2, were chosen in such a way that
maximum nonlinear modulation in simulations was
χ(2)(ω; 2ω,−ω)Hω < 0.2. Such modulation is expected
in resonant nonlinear processes, since even in realistic
non-resonant case [5], the nonlinear modulation of 0.01
was created by the external magnetic fields with ampli-
tudes less then 1 A/m. Our results demonstrate that for
a one-wavelength-thick slab, the SHG enhancement due
to the second resonance can become larger by at least
one order of magnitude. The decrease of losses would
allow increasing the efficiency.
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FIG. 3: (a) Reflection coefficient of the second harmonics as
function of resonant frequency ratioX, for different slab thick-
nesses D. (b) Maximum reflection coefficient of the second
harmonics (solid) and reflection coefficient at X = 3 (dashed)
as function of slab thickness.

Dependence of the maximum reflection coefficient of
the SH wave and reflection coefficient in non-resonant
case (X = 3) on the slab thickness is shown in Fig. 3(b).
One can see that the major relative increase of the SHG
process in resonance, compared to non-resonant case, is
observed for thin nonlinear slabs.

In conclusion, we have suggested double-resonant
metamaterials for the study of phase-matched parametric
interactions in composite nonlinear media. In particular,
we have analyzed a composite structure consisting of two
types of resonant magnetic elements, and demonstrated
that such a binary resonant structure can enhance signif-
icantly the second-harmonic generation.
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