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Optimal ranking in networks with community structure
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The World-Wide Web (WWW) is characterized by a strong community structure in which groups
of webpages (e.g. those devoted to a common topic or belonging to the same organization) are
densely interconnected by hyperlinks. We study how such network architecture affects the average
Google rank of individual communities. Using a mean-field approximation, we quantify how the
average Google rank of community webpages depends on the degree to which it is isolated from the
rest of the world in both incoming and outgoing directions, and α – the only intrinsic parameter of
Google’s PageRank algorithm. Based on this expression we introduce a concept of a web-community
being decoupled or conversely coupled to the rest of the network. We proceed with empirical study
of several internal web-communities within two US universities. The predictions of our mean-field
treatment were qualitatively verified in those real-life networks. Furthermore, the value α = 0.15
used by Google seems to be optimized for the degree of isolation of communities as they exist in the
actual WWW.
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The World Wide Web (WWW) – a very large (∼ 1010

nodes) network consisting of webpages connected by hy-
perlinks – presents a challenge for the efficient informa-
tion retrieval and ranking. Apart from the contents of
webpages, the network topology around them could be a
rich source of information about their relative importance
and relevance to the search query. It is the effective uti-
lization of this topological information [1] that advanced
the Google search engine to its present position of the
most popular tool on the WWW and a profitable com-
pany with a current market capitalization around $80
billion. As webpages can be grouped based on their tex-
tual contents, language in which they are written, the
organizations to which they belong etc, it should come
as no surprise that the WWW has a strong community
structure [2] in which similar pages are more likely to con-
tain hyperlinks to each other than to the outside world.
Formally a web community can be defined as a collection
of webpages characterized by an above-average density
of links connecting them to each other.

In this letter, we are going to address the follow-
ing question: how does the relative isolation of commu-
nity’s webpages from the rest of the network affects their
Google rank? In addition we would speculate the param-
eters of Google’s PageRank algorithm were selected for
its optimal performance given the extent of the commu-
nity structure in the present WWW network.

In the heart of the Google search engine lies the PageR-
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ank algorithm determining the global “importance” of
every web page based on the hyperlink structure of the
WWW network around it. When one enters a search
keyword such as e.g. “statistical physics” on the Google
website the search engine first localizes the subset of web-
pages containing this keyword and then simply presents
them in the descending order based on their PageRank
values. While the details of the PageRank algorithm
have undoubtedly changed since its introduction in 1997,
the central “random surfer” idea first described in [1] re-
mained essentially the same. From a statistical physics
standpoint the PageRank simulates an auxiliary diffu-
sion process taking place on the network in question. A
large number of random walkers are initially randomly
distributed on the network and are allowed to move along
its directed links. Similar diffusion algorithms have been
recently applied to study citation and metabolic networks
[3] and the modularity of the Internet on the hardware
level represented by an undirected network of intercon-
nections between Autonomous Systems [4]. As in real
web surfing, a random walker of the PageRank algorithm
could “get bored” from following a long chain of hyper-
links. To model this scenario, the authors introduced a
finite probability α for a random walker to directly jump
to a randomly selected node in the network not following
any hyperlinks. This leaves the probability 1−α for it to
randomly select and follow one of the hyperlinks of the
current webpage. According to [5], in the real PageR-
ank algorithm α was chosen to be 0.15. The algorithm
then simulates this diffusion process until it converges to
a stationary distribution. The Google rank (PageRank)
G(i) of a node i is proportional to the number of random
walkers at this node in such a steady state, and is usu-
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ally normalized by 〈G(i)〉 = 1. In this normalization, the
flux of walkers entering a given site due to random jump

from all the other nodes is given by
∑N

i=1 αGi/N = α.
The continuity equation for this diffusion process reads

G(i) = α +
∑

j→i(1 − α) G(j)
Kout(j)

. Here Kout(j) denotes

the number of hyperlinks (the out-degree) of the node j
and the summation goes over all nodes j that have a hy-
perlink pointing to the node i. In the matrix formalism
the PageRank values are given by the components of the
principal eigenvector of an asymmetric positive matrix
related to the adjacency matrix of the network. Such
eigenvector could be easily found using a simple iterative
algorithm. In order for this one needs all nodes to satisfy
Kout(i) > 0. Practically, it is done by iteratively remov-
ing pages with zero out-degrees from the network [5].
Consider a network in which Nc nodes form a commu-
nity characterized by an above-average density of edges
linking these nodes to each other. Let Ecw to denote the
total number of hyperlinks pointing from nodes in the
community to the outside world, while Ewc - the total
number of hyperlinks pointing in the opposite direction.
As the Google rank is computed in the steady state of the
diffusion process , the total current of surfers Jcw leaving
the community must be precisely balanced by the oppo-
site current Jwc of surfers entering the community. Note
that both Jcw and Jwc consist of two contributions: the
current via the direct hyperlinks between the community
and the outside world, and the current due to random
jumps.
Let Gc = 〈G(i)〉i∈C to denote the average Google rank

of webpages inside the community. The average current
flowing along a hyperlink pointing away from the commu-
nity is given by (1− α)Gc/〈Kout〉c and the total current
leaving the community along all those out-going links
is (1 − α)EcwGc/〈Kout〉c. The total number of random
walkers residing on nodes inside the community is GcNc

and the probability of a random jump to lead to a node
outside the community is Nw/(Nc +Nw), which is close
to 1 as Nc ≪ Nw. The contribution to the outgoing cur-
rent due to such jumps is given by αGcNc, and thus the
total outgoing current is Jcw = (1− α)GcEcw/〈Kout〉c +
αGcNc. Similarly the incoming current Jwc is given by
(1 − α)GwEwc/〈Kout〉w + αGwNc. Equating these two

currents one gets
Gc

Gw

=
(1− α)Ewc/(〈Kout〉wNc) + α

(1− α)Ecw/(〈Kout〉cNc) + α
.

One may notice that 〈Kout〉wNc and 〈Kout〉cNc are re-

spectively equal to E
(r)
wc and E

(r)
cw – expected numbers of

links connecting the community to the outside world in
a random network with the same degree sequence as the
network in question [6]. By approximating Gw ≈ 1, we
finally arrive at the following equation:

Gc =
(1 − α)Ewc

E
(r)
wc

+ α

(1 − α)Ecw

E
(r)
cw

+ α
. (1)

For simplicity of notation, let us refer to the ratios

Ewc/E
(r)
wc and Ecw/E

(r)
cw as Rwc and Rcw respectively.

Roughly speaking, Rcw and Rwc quantify how isolated
is a given community in both directions connecting it to
the outside world. In fact, in most communities both
ratios Rwc and Rcw are below 1 because Ewc and Ecw

are typically less than their expected values in a ran-
domized network [7]. One implication of the Eq.1 is that
the average Google ranking of a community depends on
the pattern of their connections with the outside world
through the ratios Rcw and Rwc. For example if Rwc

is close to 1 (i.e. the number of links pointing to the
community is roughly the same as in a random network
with the same degree distribution), Gc gets its maximum
value 1/α when Rcw ≪ α, which could be interpreted as
the community very isolated in the out-direction. On
the contrary, if the number of out-going links from the
community to the outside world is roughly the same as
in a corresponding randomized network, Gc attains its
minimum value of α if the community is very isolated in
the in-direction (Rwc ≪ α). From Eq.1 one could easily
see that the relative values of isolation ratios Rcw, Rwc

and the parameter α determines the sensitivity of Gc to
community’s connections with the outside world. If ei-
ther Rcw or Rwc is comparable to α, Gc is sensitive to the
exact number of links connecting the community to the
outside world in this particular direction. Conversely, if
both Rwc, Rcw ≪ α the average Google rank of commu-
nity is no longer sensitive to its outside connections, and
its value is close to 1 which is the overall average value
of Gi for all nodes. In this case, we would refer to this
community as being “decoupled” from the outside world.
Of course, whether a community is decoupled or coupled
depends on the value of α. A community decoupled at
a particular α could become coupled if a smaller α is
chosen.
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FIG. 1: The average Google rank Gc of different communi-
ties as a function of the parameter α. The communities are
within real WWW networks of two US universities (see Table
I for details). The data points are obtained by running the
PageRank algorithm for different values of α. Solid lines are
two-parameter best fits to the data with the Eq.1.
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To empirically investigate the interplay between Gc

and α in real World-Wide Web, we downloaded [8]
complete sets of hyperlinks contained in all webpages
within two US universities. We then studied intra-
university communities based either on common inter-
ests (like schools or departments) or common geographic
locations (like individual campuses of a large university
system). (See Table I for details.) The relation between
Gc and α for six such communities are shown in Fig.1.
As expected from our calculations, as α is lowered in all
these communities Gc starts to significantly deviate from
1. Moreover, the community “UCLA social science” devi-
ates upward while all the others deviate downward. This
could be qualitatively explained by the Eq.1, with the
observation that Rwc is greater than Rcw in this com-
munity, while Rwc is less than Rcw in all the others (see
Table II). Furthermore, by looking at which values of α
does Gc starts to significantly deviate from 1, one can see
that different communities become coupled to the outside
world for different α’s. For example, “UCLA Library”
and “UCLA Academic Tech. Service” reach the level
of Gc = 0.8 when α is around 0.2 − 0.3, while “UCLA
Anderson School of Management” and “LIU CWP cam-
pus” reach the same level of coupling only for much lower
α ≈ 0.01− 0.05.

We would like to point out that the Eq.1 is based on
a “mean-field” assumption. The average Google ranks
and out-degrees of community nodes sending links to the
outside world are assumed to be equal to the overall av-
erage values inside the community, and the same is as-
sumed for the nodes in the outside world that have links
to the community. Of course this is never perfectly true
for real web-communities. For example, a community
may be linked from the outside world by a highly ranked
authority page, and receive an in-coming current larger
than predicted by our mean-field calculation. Conversely,
it can only get links from relatively unimportant pages
which would result in our mean-field model overestimat-
ing the actual current. There is no universal rule for
estimating even the sign of the deviation from the mean
field predictions. Thus it is impossible to calculate “cor-
rections” to our mean-field formula. Instead those correc-
tions have to be considered on a case-by-case basis. By
allowing parameters Rcw and Rwc in the Eq.1 to deviate
from their values prescribed by the mean-field theory pro-
vides a simple mathematical formalism to quantify those
corrections for real communities. We define R∗

cw and R∗

wc

from the two-parameter best fit of the actual Gc(α) de-
pendence in a given community with the Eq.1 (see Table
II.) One may regard R∗

cw and R∗

wc as effective parame-
ters, which in addition to simple geometrical properties
of the community such as numbers of links connecting
it to the outside world, take into account Google ranks
of actual pages sending those links. These “renormal-
ized” ratios R∗

cw and R∗

wc would be more accurate than
their “raw” counterparts (Rcw and Rwc) in determining
whether a particular web-community is coupled to or de-
coupled from the outside world at a given value of α.

TABLE I: The basic statistics about the academic WWW
networks downloaded from Ref. [8]. We choose to study
hyperlink networks within the Long Island University (LIU,
29476 nodes and 160457 edges) and separately within the Uni-
versity of California at Los Angeles (UCLA, 135533 nodes and
636595 edges). Following Google’s original recipe [1] we itera-
tively removed webpages with zero out-degree. The resulting
networks consist of 15471 nodes and 90111 edges for the LIU
and 31621 nodes and 353370 edges for the UCLA. We then
studied several large communities defined by the URL of their
servers (e.g. .library.ucla.edu for the ”UCLA Library” com-
munity.)

Community Nc Ecc E
(r)
cc Ewc Ecw

UCLA Library 2028 23062 1699 755 2141
UCLA School of Management 1340 15983 739 175 169
UCLA Academic Tech. Services 1907 26597 2248 139 3113
UCLA Social Science Division 626 3986 50 258 142
UCLA Humanity Division 864 4846 79 397 445

LIU CWP Campus 2756 18376 4105 336 1393

TABLE II: Rcw, Rwc, R
∗

cw and R∗

wc for different communi-
ties. Rcw and Rwc are obtained by counting the links from
the community to the world and vice versa, divided by the
corresponding number of links in a random network with the
same degree distribution [6]. R∗

cw and R∗

wc are result of fitting
the Gc and α dependency via Eq.1.

Community Rwc Rcw R∗

wc R∗

cw

UCLA Library 0.04 0.09 0.02 0.07
UCLA School of Management 0.01 0.01 0.005 0.006
UCLA Academic Tech. Services 0.007 0.1 0.003 0.07
UCLA Social Science Division 0.04 0.03 0.02 0.01
UCLA Humanity Division 0.04 0.08 0.05 0.07

LIU CWP Campus 0.03 0.09 0.01 0.02

The effective ratios R∗

cw and R∗

wc for the six communi-
ties used in our study are listed in the Table II and visual-
ized in Fig.2. Generally speaking, the closer to the origin
is a community in this figure, the lower is the value of α
at which it first becomes coupled to the outside world.
One could see that for α = 0.15, which is the actual value
used by the Google [5], all of our six communities are es-
sentially decoupled from the outside world. However, if
a much smaller value of α (say 0.01) is chosen, 5 out of 6
of our communities (all except for the ”UCLA Anderson
School of Management”) would become sensitive to their
connections with the outside world. In principle, Fig.2
might be extended to include the region where R∗

cw and
R∗

wc are above one, but by definition those points are
not referring to well-defined communities. From Eq.1 it
follows that it is the asymmetry between Rcw and Rwc

which determines whether Gc is greater than or less than
1. Thus the diagonal in Fig. 2 separates communities
with Gc > 1 from those with Gc < 1. The ratio between
the x- and y-coordinates of the community in this plot
determines the asymptotic value of its Google rank Gc

for α close to zero. Thus the two communities: “UCLA
Academic Tech. Service” and “UCLA Social Science”,
whose ratios between their x− and y− coordinates in
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this plot are respectively the smallest and the largest in
our set deviate the most from Gc = 1 as shown in Fig.1.

FIG. 2: R∗

cw and R∗

wc for different communities. Communities
inside the lightly shaded square are decoupled from the rest of
the world for α = 0.15, while the ones inside the dark shaded
square are decoupled for α = 0.01.

The dominance of Google and the all-important role
of its ranking led to the appearance of services offer-
ing “search engine optimization” to their clients. They
promise to modify the content and the hyperlink struc-
ture of client’s webpages to improve their Google rank.
Our findings suggest one obvious way how such an “opti-
mization” could be achieved: the number of links point-

ing to the outside world should be reduced to the min-
imum while the number of intra-community hyperlinks
is kept at the maximum. However, as we demonstrated
above the success of such a strategy depends on whether
or not the community in question is coupled to the out-
side world. Indeed, the average Google rank of a de-
coupled community is virtually insensitive to the exact
balance of hyperlinks connecting it to the outside world
.

Since coupling of web-communities to the outside
world and the resulting ability of their webmasters to
artificially boost the ranking is undesirable for a search
engine, it should come as no surprise that the internal
parameter α chosen by the Google’s team is carefully se-
lected to minimize this effect. To make most of the com-
munities decoupled the value of α in the PageRank algo-
rithm should be as large as possible. On the other hand,
for very large α the algorithm does not take into account
also the relevant network properties of the WWW. In-
deed for α close to 1, random surfers rarely follow hyper-
links and thus nearly all topological information about
the network is lost. Therefore, the optimal value of α
should be chosen based on the realistic values of isola-
tion parameters Rcw and Rwc. In our study we found all
the communities to be effectively decoupled at α = 0.15
but not at smaller values of α (e.g α = 0.01 shown as
a dark shaded square in Fig.2). Thus for our sample
of web-communities the value α = 0.15 proposed in [1]
indeed optimizes Google’s goals by striking the best pos-
sible balance between the two opposing demands on the
value of α.
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