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McGill University †
Dominic Mayers

Princeton University ‡

Louis Salvail
BRICS §

September 13, 2018

Abstract

It has been recently shown by Mayers that no bit commitment scheme is secure
if the participants have unlimited computational power and technology. However it
was noticed that a secure protocol could be obtained by forcing the cheater to perform
a measurement. Similar situations had been encountered previously in the design of
Quantum Oblivious Transfer. The question is whether a classical bit commitment
could be used for this specific purpose. We demonstrate that, surprisingly, classical
unconditionally concealing bit commitments do not help.

1 Introduction

After Mayers obtained his general impossibility theorem for bit commitment schemes
(see the Appendix of [13] and [1, 2]), different kind of ideas were proposed by some
of us with the hope to realize unconditionally secure bit commitment. It was then
realized that these apparently promising ideas were also ruled out by Mayers’ attack.
These attempts contributed to enhance our understanding of what is going on with
quantum bit commitment. However, no complete discussion on the subject has ever
been provided in the literature. The most interesting attempts were based on the use
of a classical bit commitment together with temporary assumptions on the power of
the cheater. The idea was to use the classical bit commitment to force the cheater
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to perform a measurement. This would be useful to realize many quantum protocols
other than quantum bit commitments. Here our objective is to bring out the general
principles that explain why this approach does not work in quantum cryptography.

Before we proceed, let us briefly explain the notion of bit commitment and its
impact in quantum cryptography. Quantum cryptography is often associated with a
cryptographic application called key distribution [11, 12] and it has achieved success
in this area [3]. However, other applications of quantum mechanics to cryptography
have also been considered and bit commitment was at the basis of most if not all of
these other applications [3, 14, 15, 16]. A bit commitment scheme allows Alice to send
something to Bob that commits her to a bit b of her choice in such a way that Bob
cannot tell what b is, but such that Alice can later prove to him what b originally
was. You may think of this as Alice sending a note with the value b written on it in a
strong-box to Bob and later revealing him the combination to the safe.

The commitment obtained after the commit phase is binding if Alice cannot change
the value of b and it is concealing if Bob cannot obtain any information about b without
the help of Alice. The commitment is secure if it is binding and concealing. The
commitment is unconditionally secure if it is secure against a cheater, either Alice

or Bob, with unlimited technology and computational power. In 1993 a protocol for
quantum bit commitment, henceforth referred to as BCJL, was thought to be provably
secure [15]. Because of quantum bit commitment, the future of quantum cryptography
was very bright, with new applications such as the identification protocol of Crépeau
and Salvail [17] coming up regularly.

The trouble began in October 1995 when Mayers found a subtle flaw in the BCJL
protocol. Though Mayers explained his discovery to many researchers interested in
quantum bit commitment [18], his result was not made entirely public until after Lo
and Chau discovered independently a similar result in March 1996 [19]. The result of
Mayers was more general than the one obtained by Lo and Chau, but both used the
same basic idea. The result of Lo and Chau did not encompass the BCJL protocol in
which Bob can obtain an exponentially small amount of information. (In practice a
protocol is considered secure as long as Bob cannot obtain more than an exponentially
small amount of information on the bit committed by Alice, that is, an amount of
information that goes exponentially fast to 0 as the number of photons used in the
protocol increases.) However, the final version published by Lo and Chau [19] used
the techniques previously used by Mayers [18] to prove the non security of the BCJL
protocol and any other protocol published at the time. So, the paper of Lo and Chau
[19] is a proper account of these preliminary results.

2 The general impossibility theorem

Now, we review the general theorem [2], which says that a quantum protocol that
creates an unconditionally secure bit commitment is simply impossible. The main
additional difficulty in the general result is that it is easy to think that measurements
and classical communication could be used to restrict the behaviour of the cheater
during the commit phase, and thus obtain a secure bit commitment. In fact, after
BCJL was shown not secure, the spontaneous attitude was to try alternative quantum
bit commitment protocols by making some clever use of measurements and classical
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communication [20]. Some of these protocols were proposed after Mayers obtained the
general result in March 1996. All of these protocols were found not secure against
Mayers’ attack.

There exists two approaches to deal with measurements and classical communica-
tion in quantum bit commitment protocols: an indirect and a direct approach. In the
first proof of Mayers (see [1] and the Appendix of [13]) the indirect approach was used.
It was shown that any protocol in which classical information is used is equivalent to
another protocol in which no classical information is used. Then it was shown that no
such protocol is unconditionally secure. The advantage of this approach is that, after
the reduction is shown, the attack on the new protocol is easy to describe and ana-
lyze because there is no classical communication anymore. The disadvantage is that
we don’t deal directly with the issue of classical communication and measurements,
that is, the attack obtained against the new protocol is not the one that applies on
the original protocol. The attack on the new protocol does not include any classical
communication, whereas in the original protocol the cheater must communicate classi-
cally with the honest participant (otherwise this honest participant will wonder what
is going on).

We emphasize that the proof of the reduction which is not that hard must never-
theless explain why the cheater can still cheat in the original protocol despite the fact
that he is restricted by measurements and decoherence which must occur because of
classical communication. Otherwise the overall proof would simply miss the important
issue of classical communication – it would not encompass the protocols and ideas that
have been proposed recently [3, 5, 8, 9]. Mayers preferred to use a more direct approach
without reduction in [2]. So, Mayers’ paper [2] directly describes and analyzes the real
attack that must be performed by the cheater.

Lo and Chau also wrote a paper [7] to discuss the issue of quantum communication
and other aspects of Mayers’ result. They used a variant of Yao’s model for quantum
communication. The essence of this model is that a third system is passed back and
forth under the control of each participant when it is their turn [16]. Mayers’ attack
works fine in this model, and it is indeed important to verify that the attack works in
such a reasonable model. With regard to classical communication, the discussion of Lo
and Chau [7] is similar to the indirect approach of Mayers.

Now, let us consider the attack. Of course, we are interested in the attack on the
original protocol. The attack on the new protocol is just a construction in a proof.
We emphasize that in both approaches, with a reduction or without a reduction, the
attack on the original protocol is the same. Here we focus on the part of the attack
that must be performed during the commit phase. (The remainder of the attack, which
is performed after the commit phase, is the same as when there is no classical com-
munication, so it creates no additional difficulty.) One ingredient in the attack is that
the cheater keeps everything at the quantum level except what must be announced
classically. Assume that at some given stage of the commit phase, a participant has
normally generated a classical random variable R, performed measurements to obtain
an overall outcome X, and shared some classical information Y with the other par-
ticipant as a result of previous communication. Now, assume that this participant is
the cheater and that the protocol says he must transmit some classical information
f(R,X, Y ), which for simplicity we assume is a binary string. One might think that
the cheater must have generated the random variable R and the outcome X in order
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to be able to compute and send f(R,X, Y ). However, the cheater does not have to do
that. As we explain later, he can do the entire computation of f(R,X, Y ), including
the computation of R and the measurements, at the quantum level. Only Y needs to
be classical. Then he can measure the bits of the string f(X,R, Y ) (only these bits)
and send them to the other participant. The final result is that all information is kept
at the quantum level, except what must be sent classically to the other participant. As
explained in [1, 2] (see also the Appendix of [13]) this strategy performed during the
commit phase either allows Bob to obtain some information about the bit committed
by Alice, without any help from Alice, or else allows Alice to change her mind after
the commit phase.

To understand how the cheater can perform the same algorithm at the quantum
level, it is useful to keep in mind that any classical process can be seen as a special kind
of quantum phenomena. Therefore, in principle no modification is required because
the classical algorithm already describes a quantum process. It is sufficient to describe
the exact same algorithm in the viewpoint that every phenomena corresponds to a uni-
tary transformation. The standard way to do that is the following. Let C(ω0) be the
initial state of a measuring apparatus. A measurement on a state ψ becomes a unitary
transformation that maps ψ ⊗ C(ω0) into

∑

i ψi ⊗ C(ωi) where C(ωi) is the state of the
measuring apparatus associated with the outcome ωi and ψi is the corresponding (un-
normalized) final state of the measured system. The generation of a random variable
r with probability p(r) corresponds to the creation of a superposition

∑

r

√

p(r)C(r)
where the states C(r) are orthonormal states that encode the random classical infor-
mation r. In particular, the state ψ = αC(0)+βC(1) corresponds to a random bit that
takes the values 0 and 1 with probability |α|2 and |β|2 respectively. Now, suppose that
a function f(x) must be computed. The output of the function f requires a new regis-
ter denoted F . Initially, the registers X and F are in state

∑

x λxC(x) ⊗ C(0), that is,
the value x for the input occurs with probability |λx|2 and the register F is initialized
at 0. The result of the computation of f is the state

∑

x λxC(x) ⊗ C(f(x)). When we
say that the cheater performs the same algorithm at the quantum level, we mean that
the classical states C(x), C(r), etc. are replaced by orthogonal quantum states of truly
quantum systems. These techniques will become clear when examples are discussed in
the next section.

Despite the fact that formally the algorithms are identical, the cheater will have
more flexibility later on if he performs his algorithm at the quantum level rather than
at the classical level. It is not true that these two levels are equivalent. For example,
the truly quantum state α|0〉 + β|1〉 can be unitarily mapped into the state |0〉, but
this is not true for the corresponding classical state because a part of the overall states
C(0) and C(1) is encoded in an irreversible manner in the environment or the classical
apparatus, etc. Therefore, one would like to find a way to force the cheater to perform
real measurements, as requested in the honest protocol. This would be useful not
only to realize quantum bit commitment protocols, but to realize many other quantum
protocols, including the important quantum oblivious transfer protocols [23, 14].

A better understanding of the situation came after Crépeau proposed a quantum
protocol [3, 5] that uses a computationally secure classical bit commitment [21, 22] as
a subprotocol. The idea was to rely temporarily on the limitation (in speed) on the
cheater during the commit phase to force him to perform some measurements. The
hope was that this short-term assumption could be dropped after the commit phase
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so as to obtain a quantum bit commitment not relying on any long-term assumption.
Salvail also proposed a protocol in which two participants, Alice and Alyson say, want
to commit a bit to Bob. Alice and Alyson are sufficiently far apart that they cannot
communicate during the commit phase. Again the hope was that this temporary
restriction on the cheaters during the commit phase would be sufficient to obtain a
secure quantum bit commitment not relying on any long-term assumption.

However, after some thoughts, one realizes that the cheater in Mayers’ attack per-
forms the honest algorithm: the only difference is that he performs this honest algo-
rithm at the quantum level. Therefore, if the cheater has the power to perform the
honest protocol (which he must have) and has the technology to store information at
the quantum level, then he has the power to cheat during the commit phase, despite
the fact that he has not the power to break the computationally secure bit commit-
ment efficiently, or despite the fact that Alice and Alyson cannot communicate during
the commit phase. After the commit phase, the rule of the game is that we must
drop the assumption on the computational power of the cheater, so the fact that a
computationally secure bit commitment was used is irrelevant: the proof applies.

3 Quantum attacks

Here, we analyze the possibility to use classical bit commitment protocol to force the
cheater to perform a measurement. Our conclusion is that, surprisingly, a whole class of
classical BC schemes (that are perfectly concealing) fail miserably in this scenario. Our
result is illustrated with the computational BC scheme of Naor, Ostrovsky, Venkatesen
and Yung [22], and the two-prover BC scheme of Ben-Or, Goldwasser, Kilian and
Wigderson [6]. The basic idea can be used regardless of the BC scheme.

The attack is inspired from the discussion of the previous section, but we will
focus on the fact that the objective (defeated by the attack) is to force a measurement
rather that an entire protocol. In the following, the goal of the protocol is to force a
measurement using a classical bit commitment. In the cheating protocol, Alice creates
a superposition of all possible honest strategies. For example, suppose that Alice

is given a quantum state ψ = α|0〉 + β|1〉 to measure and that Bob is expecting a
commitment to the outcome. In the cheating protocol, Alice measures the state ψ at
the quantum level as explained in the previous section. Then she performs the commit
part of the (classical) protocol at the quantum level as if she committed to the outcome
of the measurement. At the end of the commit phase, this outcome is entangled with
other registers on Alice’s side, but it is still in superposition. At this point there are
two possibilities.

• if unveiling is requested, she measures her remaining quantum state and success-
fully complete the protocol as if she had been honest all the way!

• if no unveiling is requested, she undoes the entanglement in such a way as to
recover the state ψ that was given to her to start with, completely untouched!

This completely defeats the purpose of the BC scheme if the goal was to force a mea-
surement. We now illustrate this principle with two examples.
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3.1 NOVY Bit Commitment Scheme

In a computational scenario two techniques reduce bit commitment to very general
cryptographic assumptions: the protocol of Naor [10] reducing unconditionally binding
and computationally concealing bit commitment to pseudorandomness, and the pro-
tocol of Naor, Ostrovsky, Venkatesen and Yung [22] reducing computationally binding
and unconditionally concealing bit commitment to one-way permutations. We restrict
our attention to this second result and first present their construction. In the following,
π : {0, 1}n → {0, 1}n denotes a one-way permutation.

Protocol 3.1 ( NOV Y/Commit(b) )

1: Alice picks x ∈R {0, 1}n, and computes y := π(x),

2: for i ∈ {1, ..., n − 1} do

3: Bob picks a hash vector hi ∈R {0, 1}n and announces it to Alice,

4: Alice announces ri := hi · y to Bob,

5: endfor

6: Let y0, y1 be two solutions to {ri = hi · y∗}1≤i<n in some fixed order (say y0 < y1).
Alice announces z := a⊕ b to Bob where a is such that y = ya.

The fact that this protocol is unconditionally concealing is obvious since the com-
mitment depends entirely on the fact that Alice knows the inverse of y0 or y1. Since
both have a unique inverse, it is impossible for Bob to tell which one Alice knows. Intu-
itively, the reason why this protocol is binding is that the problem of finding two couples
(x0, y0) and (x1, y1) such that y0 = π(x0), y1 = π(x1) and hi · y0 = hi · y1, 1 ≤ i < n is
difficult.

Protocol 3.2 ( NOV Y/Unveil(b) )

1: Alice discloses b and x to Bob,

2: Bob checks that yz⊕b = π(x).

Naor, Ostrovsky, Venkatesen and Yung showed that it is computationally equivalent
to cheat the unveiling protocol or to inverse the one-way permutation. Any efficient
algorithm to solve one problem yields an efficient algorithm to solve the other. Their
proof technique involves an algorithm to convert any attacker A to the commitment
scheme to an inverter I of the one-way permutation.

3.1.1 NOVY on a quantum computer

In order to describe the cheating protocol, we use standard tricks of quantum compu-
tation. For the reader unfamiliar with quantum computing we recommend [4] as an
introduction. We now describe precisely the attack.
The attack. In the cheating protocol, the state ψ = α|0〉 + β|1〉 is the input bit b in
superposition. So, we denote B the register that contains the state ψ.
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Protocol 3.3 ( NOV Y/Commit(∗) )

1: Alice chooses x and computes y = π(x) at the quantum level, that is, she sets up

quantum registers X,Y in state
∑

x∈{0,1}n

1√
2n

|x, π(x)〉,

2: for i ∈ {1, ..., n − 1} do

3: Bob picks a hash vector hi ∈R {0, 1}n and announces it to Alice,

4: Let Si = {x|hj · π(x) = rj, for1 ≤ j < i}.
Alice computes ri = hi · y at the quantum level, that is, she sets up registers X,Y,R in

state
∑

x∈Si

1√
2n−i+1

|x, π(x), hi · π(x)〉, and announces ri, the outcome of measuring R, to

Bob.

5: endfor

{ At this point Sn−1 contains two solutions x0, x1 to {ri = hi · π(x)}1≤i<n.
So the state of the registers B,X, Y is

(α|0〉 + β|1〉) ⊗ 1√
2
(|x0, y0〉+ |x1, y1〉)

=
α√
2
|0, x0, y0〉+

α√
2
|0, x1, y1〉+

β√
2
|1, x0, y0〉+

β√
2
|1, x1, y1〉.

}

6: Alice computes z := a⊕ b, where a is the index of y, at the quantum level, that is, she
prepares the registers B,X, Y, Z in the state

α√
2
|0, x0, y0, 0〉 +

α√
2
|0, x1, y1, 1〉+

β√
2
|1, x0, y0, 1〉 +

β√
2
|1, x1, y1, 0〉.

Then she measures the register Z and announces z to Bob.

Protocol 3.4 ( NOV Y/Unveil(∗) )

1: Alice measures registers B and X, and announces b and x to Bob,

2: Bob checks that yz⊕b = π(x).

If Alice unveils. First we want to verify that, if Alice unveils the bit, she passes
the test. Perhaps the easier way to verify this fact is to actually compute the state she
has after the commit part. If she announces z = 0, the state of B,X, Y is

α|0, x0, y0〉+ β|1, x1, y1〉.
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If she announces z = 1, the state of B,X, Y is

α|0, x1, y1〉+ β|1, x0, y0〉.

Note that in both cases, the bit b has the correct distribution of probability (the one
associated with the initial state ψ). Also, one may easily check that z ⊕ b = a so
that yz⊕b = y = π(x). Therefore, Alice passes the test. There is another way to see
the same result. To unveil the bit b, Alice measures the registers B and X. Because
these registers are only used as control registers, Alice could measure them at the
beginning of the protocol (just after the first step) and this would make no difference
(as far as the distribution of probabilities is concerned). This can actually be verified
by checking that the operation associated with a measurement on B and X (in the
computational basis) and the operation associated with a computation where B and
X are control registers always commute. In the viewpoint where she measures these
registers at the beginning of the protocol, we are back to the honest classical protocol
because all superpositions disappear. Clearly, if Alice is honest she should pass the
test.

If Alice never Unveils. Second we observe that if NOV Y/Unveil(∗) does not take
place, then Alice may recover ψ from her registers B,X, Y . She has only to compute
(xa, ya) at the quantum level using a = b ⊕ z and then erase the registers X and Y
using a bitwise XOR, and discard these registers. Note that to compute xa, she needs
to compute f−1(ya) because she does not know (x0, x1), she only knows (y0, y1).

Randomness without random tape. Alice is not committed to a fixed value
of b in the cheating protocol. This is not breaking the protocol, because even in the
classical world one could easily construct Alice’s strategy so that the attack does not
define a fixed bit: she only has to choose the bit at random. In fact, the distribution
of probability for the variables in the cheating protocol is exactly the same as in the
honest protocol. So, in any reasonable definition of security, one cannot require that
Alice is committed to a fixed bit defined by the attack.

However, there is still a fundamental difference between the classical situation and
the quantum situation. In the classical world, one can look at Alice’s random tape and
actually determine the bit. So the attack and the random tape together determine the
bit. This is why we intuitively think that Alice is committed to a fixed bit. This is not
true anymore in the quantum case. We cannot think anymore that Alice is committed
to a fixed bit (determined by the value of the random tape). In a quantum protocol,
the outcomes of measurements introduce some randomness which cannot be explained
by the use of a random tape. There is no such a thing as a random tape which uniquely
determine the bit.

This means that the näıve definition of security associated with classical bit com-
mitment, namely that Alice must be committed to a fixed bit, is not valid anymore in
the quantum world. This is what we consider a weak quantum attack on classical bit
commitment. This is why the security criteria proposed in [2] is that Alice should be
committed to a random distribution of probability. This notion of security is valid in
both the quantum and the classical world.

The fact that in a quantum protocol there is randomness without initial random
tape has far reaching consequences (other than simply attacking our näıve notion of se-
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curity for classical bit commitment). One important ingredient in the proof of NOVY,
which reduces the security of their classical bit commitment against Alice to the exis-
tence of one way permutation, is that the randomized strategy used by Alice is replaced
by a deterministic strategy by fixing the value of the random tape. Unfortunately, be-
cause randomness can still exist in a quantum protocol even if we fix the initial random
tape, this approach does not work. One cannot consider that Alice performs a fixed
strategy. So the proof of Novy does not (at the least not directly) apply to quantum
attacks. This is another kind of quantum attacks against classical bit commitment:
here it’s the proof of security that is attacked, not the protocol directly.

3.2 Two-Prover Bit Commitment Scheme

Our second example is the two-prover BC scheme of BGKW. The assumption used for
this protocol is that two parties Alice and Alyson who are allowed to exchange infor-
mation before the beginning of the protocol, cannot communicate during the execution
of the protocol. Nevertheless, both of them can talk to Bob. This assumption may
be implemented by trapping Alice and Alyson in Faraday cages or using relativistic
effects keeping them separate of a large enough distance. In an initialization phase,
Alice and Alyson share information necessary to run the commitment protocol.

Protocol 3.5 ( 2P/Init )

1: Alice picks r ∈R {0, 1}n, and shares it as r′ with Alyson,

2: Alice and Alyson are physically split,

In order to commit they run the following

Protocol 3.6 ( 2P/Commit(b) )

1: Bob sets m0 := 0n and picks m1 ∈R {0, 1}n, and announces them to Alice,

2: Alice sends z := r ⊕mb to Bob.

The commitment is concealing because for each z there exists a unique pair r0, r1
such that r0 ⊕m0 = z = r1 ⊕m1. On the other hand, it is binding because Alyson

does not know the value of m1.

If unveiling is required they run

Protocol 3.7 ( 2P/Unveil(b) )

1: Alice discloses b and r to Bob,

2: Alyson discloses r′ to Bob,

3: Bob checks that r = r′ and that z = r ⊕mb,

Since Alyson does not know m1, she is restricted to disclosing her r′ to have non
negligeable probability of satisfying Bob.
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Ben-Or, Goldwasser, Kilian and Wigderson [6] have used this protocol to prove
NP statements in perfect zero-knowledge. This follows from the fact that this bit
commitment is unconditionally concealing.

3.2.1 Defeating 2P/Commit

Let R,R′ be a pair of quantum registers in state ( 1√
2
(|00〉 + |11〉))n shared between

Alice and Alyson before they are physically separated and let B := ψ = α|0〉 + β|1〉
be a register containing the particle given to Alice by Bob.

Protocol 3.8 ( 2P/Init )

1: Alice and Alyson choose and share a common string at the quantum level, that is, they
share registers (R,R′) in state ( 1√

2
|00〉 + 1√

2
|11〉)n,

2: Alice and Alyson are physically split,

Commitment is performed by superposition of the honest protocol:

Protocol 3.9 ( 2P/Commit(∗) )

1: Bob sets m0 := 0n and picks m1 ∈R {0, 1}n, and announces them to Alice,

2: Alice computes z := r⊕mb at the quantum level, that is, she prepares registers B,R,Z
in state

∑

r∈{0,1}n

1√
2n

(α|0, r, r ⊕m0〉+ β|1, r, r ⊕m1〉)

3: Alice measures Z to get z and sends z to Bob.

After z is measured the global state of registers B,R,Z,R′ is

1√
2
(α|0, z ⊕m0, z, z ⊕m0〉+ β|1, z ⊕m1, z, z ⊕m1〉).

Unveiling is performed by measurements on both sides:

Protocol 3.10 ( 2P/Unveil(∗) )

1: Alice measures B,R1, ..., Rn to get b, r1, ..., rn, and discloses b, r to Bob,

2: Alyson measures R′
1, ..., R

′
n to get r′1, ..., r

′
n and discloses r′ to Bob,

3: Bob checks that r = r′ and that z = r ⊕mb,

If Alice-Alyson Unveil We now show that this unveiling is always successful. Re-
member that after z is measured, the global state of registers B,R,Z,R′ is

1√
2
(α|0, z ⊕m0, z, z ⊕m0〉+ β|1, z ⊕m1, z, z ⊕m1〉)
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and thus the bit b has the correct distribution of probability (the one associated with
the initial state ψ). Also, one may easily check that in both cases r = z ⊕mb = r′.
Therefore, Alice-Alyson pass the test.

If Alice-Alyson never Unveil Second we observe that if 2P/Unveil(∗) does not
take place, then Alice-Alyson may recover ψ from their registers B,R,R′. They only
have to compute z ⊕mb at the quantum level and then erase the registers R and R′

using a bitwise XOR, and discard these registers. This computation may be done
efficiently, but it requires that Alice-Alyson get back together.

4 Discussion and Conclusions

The first proof provided for the impossibility of bit commitment has completely oblit-
erated the possibility of creating an unconditionally secure bit commitment. However,
the attack was only indirectly described. Subsequently, specific attempts to by-pass this
general result were proposed[3, 5]. This has shed more light on the nature of the attack
which was finally described explicitly in [2]. Our goal here was to provide an analysis
of this general attack in the context of a specific example, and to create a wholeness for
the different papers published on the subject. Moreover, we have demonstrated that it
is impossible to base the security of quantum protocols on unconditionally concealing
bit commitment schemes, even if they were proven secure in the classical world. Notice
however that it is still possible to use computationally concealing BC protocols such
as [10] to get a computationally secure Quantum Oblivious Transfer [23, 14] protocol
based on (quantum) one-way functions; a result unlikely to be true in the classical
scenario. The big lesson to learn from all this is that quantum information is always
more elusive than its classical counterpart: extra care must be taken when reasoning
about quantum cryptographic protocols and analyzing them. We also hope that this
paper will help to clarify the issue of the impossibility of bit commitment in its full
generality.
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