Mathematics > Analysis of PDEs
[Submitted on 22 Jan 2014]
Title:On Stability of Hyperbolic Thermoelastic Reissner-Mindlin-Timoshenko Plates
View PDFAbstract:In the present article, we consider a thermoelastic plate of Reissner-Mindlin-Timoshenko type with the hyperbolic heat conduction arising from Cattaneo's law. In the absense of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, etc. We present a well-posedness result for the linear problem under general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped, thermally isolated plate, we show an exponential energy decay rate under a full damping for all elastic variables. Restricting the problem to the rotationally symmetric case, we further prove that a single frictional damping merely for the bending compoment is sufficient for exponential stability. To this end, we construct a Lyapunov functional incorporating the BogovskiÄ operator for irrotational vector fields which we discuss in the appendix.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.