Mathematics > Numerical Analysis
[Submitted on 11 Sep 2014 (v1), last revised 10 Oct 2015 (this version, v2)]
Title:A first order system least squares method for the Helmholtz equation
View PDFAbstract:We present a first order system least squares (FOSLS) method for the Helmholtz equation at high wave number k, which always deduces Hermitian positive definite algebraic system. By utilizing a non-trivial solution decomposition to the dual FOSLS problem which is quite different from that of standard finite element method, we give error analysis to the hp-version of the FOSLS method where the dependence on the mesh size h, the approximation order p, and the wave number k is given explicitly. In particular, under some assumption of the boundary of the domain, the L2 norm error estimate of the scalar solution from the FOSLS method is shown to be quasi optimal under the condition that kh/p is sufficiently small and the polynomial degree p is at least O(\log k). Numerical experiments are given to verify the theoretical results.
Submission history
From: Weifeng Qiu Dr. [view email][v1] Thu, 11 Sep 2014 09:19:39 UTC (937 KB)
[v2] Sat, 10 Oct 2015 06:13:13 UTC (502 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.