Condensed Matter > Materials Science
[Submitted on 13 Jul 2015 (v1), last revised 16 Nov 2015 (this version, v4)]
Title:The role of low-energy phonons with mean-free-paths >0.8 um in heat conduction in silicon
View PDFAbstract:Despite recent progress in the first-principles calculations and measurements of phonon mean-free-paths (MFPs), contribution of low-energy phonons to heat conduction in silicon is still inconclusive, as exemplified by the discrepancies between different first-principles calculations. Here we investigate the contribution of low-energy phonons with MFP>0.8 um by accurately measuring the cross-plane thermal conductivity of crystalline silicon films by time-domain thermoreflectance (TDTR), over a wide range of film thickness 1-10 um and temperature 100-300 K. We employ a dual-frequency TDTR approach to improve the accuracy of our cross-plane thermal conductivity measurements. We find from our cross-plane thermal conductivity measurements that phonons with MFP>0.8 um contribute 53 W/m-K (37%) to heat conduction in Si at 300 K while phonons with MFP>3 um contribute 523 W/m-K (61%) at 100 K, >20% lower than the first-principles predictions by Lindsay et al. of 68 W/m-K (47%) and 695 W/m-K (77%), respectively. Using a relaxation times approximation (RTA) model, we demonstrate that macroscopic damping (e.g., Akhieser's damping) eliminates the contribution of phonons with mean-free-paths >30 um at 300 K, which contributes 15 W/m-K (10%) to heat conduction in Si according to Lindsay et al. Thus we propose that omission of the macroscopic damping for low-energy phonons in the first-principles calculations could be one of the possible explanations for the observed discrepancy between our measurements and calculations by Lindsay et al. Our work provides an important benchmark for future measurements and calculations of the distribution of phonon mean-free-paths in crystalline silicon.
Submission history
From: Puqing Jiang [view email][v1] Mon, 13 Jul 2015 12:27:56 UTC (874 KB)
[v2] Tue, 6 Oct 2015 06:07:27 UTC (484 KB)
[v3] Wed, 7 Oct 2015 00:26:06 UTC (484 KB)
[v4] Mon, 16 Nov 2015 07:47:43 UTC (671 KB)
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.