Condensed Matter > Strongly Correlated Electrons
[Submitted on 7 Mar 2016 (v1), last revised 23 May 2016 (this version, v3)]
Title:Fermi-liquid behavior and thermal conductivity of ε-iron at Earth's core conditions
View PDFAbstract:The electronic state and transport properties of hot dense iron are of the utmost importance to geophysics. Combining the density functional and dynamical mean field theories we study the impact of electron correlations on electrical and thermal resistivity of hexagonal close-packed $\epsilon$-Fe at Earth's core conditions. $\epsilon$-Fe is found to behave as a nearly perfect Fermi liquid. The quadratic dependence of the scattering rate in Fermi liquids leads to a modification of the Wiedemann-Franz law with suppression of the thermal conductivity as compared to the electrical one. This significantly increases the electron-electron thermal resistivity which is found to be of comparable magnitude to the electron-phonon one. The implications of this effect on the dynamics of Earth's core is discussed.
Submission history
From: Leonid Pourovskii [view email][v1] Mon, 7 Mar 2016 21:01:29 UTC (781 KB)
[v2] Tue, 12 Apr 2016 22:23:52 UTC (1,115 KB)
[v3] Mon, 23 May 2016 16:35:43 UTC (209 KB)
Current browse context:
cond-mat.str-el
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.