Astrophysics > Astrophysics of Galaxies
[Submitted on 27 Apr 2016]
Title:The stellar metallicity gradients in galaxy discs in a cosmological scenario
View PDFAbstract:The stellar metallicity gradients of disc galaxies provide information on the disc assembly, star formation processes and chemical evolution. They also might store information on dynamical processes which could affect the distribution of chemical elements in the gas-phase and the stellar components. We studied the stellar metallicity gradients of stellar discs in a cosmological simulation. We explored the dependence of the stellar metallicity gradients on stellar age and the size and mass of the stellar discs. We used galaxies selected from a cosmological hydrodynamical simulation performed including a physically-motivated Supernova feedback and chemical evolution. The metallicity profiles were estimated for stars with different ages. We confront our numerical findings with results from the CALIFA Survey. The simulated stellar discs are found to have metallicity profiles with slopes in global agreement with observations. Low stellar-mass galaxies tend to have a larger variety of metallicity slopes. When normalized by the half-mass radius, the stellar metallicity gradients do not show any dependence and the dispersion increases significantly, regardless of galaxy mass. Galaxies with stellar masses around $10^{10}$M$_{\odot}$ show steeper negative metallicity gradients. The stellar metallicity gradients correlate with the half-mass radius. However, the correlation signal is not present when they are normalized by the half-mass radius. Stellar discs with positive age gradients are detected to have negative and positive metallicity gradients, depending on the relative importance of the recent star formation activity in the central regions. The large dispersions in the metallicity gradients as a function of stellar mass could be ascribed to the effects of dynamical processes such as mergers/interactions and/or migration as well as those regulating the conversion of gas into stars. [abridged]
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.