Statistics > Methodology
[Submitted on 5 May 2016 (v1), last revised 2 Sep 2017 (this version, v3)]
Title:Fractional Brownian motion, the Matern process, and stochastic modeling of turbulent dispersion
View PDFAbstract:Stochastic process exhibiting power-law slopes in the frequency domain are frequently well modeled by fractional Brownian motion (fBm). In particular, the spectral slope at high frequencies is associated with the degree of small-scale roughness or fractal dimension. However, a broad class of real-world signals have a high-frequency slope, like fBm, but a plateau in the vicinity of zero frequency. This low-frequency plateau, it is shown, implies that the temporal integral of the process exhibits diffusive behavior, dispersing from its initial location at a constant rate. Such processes are not well modeled by fBm, which has a singularity at zero frequency corresponding to an unbounded rate of dispersion. A more appropriate stochastic model is a much lesser-known random process called the Matern process, which is shown herein to be a damped version of fractional Brownian motion. This article first provides a thorough introduction to fractional Brownian motion, then examines the details of the Matern process and its relationship to fBm. An algorithm for the simulation of the Matern process in O(N log N) operations is given. Unlike fBm, the Matern process is found to provide an excellent match to modeling velocities from particle trajectories in an application to two-dimensional fluid turbulence.
Submission history
From: Jonathan Lilly [view email][v1] Thu, 5 May 2016 18:35:36 UTC (2,695 KB)
[v2] Tue, 14 Mar 2017 23:08:32 UTC (2,706 KB)
[v3] Sat, 2 Sep 2017 04:34:45 UTC (2,790 KB)
Current browse context:
stat.ME
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.