Computer Science > Social and Information Networks
[Submitted on 25 May 2016]
Title:Consensus in the Presence of Multiple Opinion Leaders: Effect of Bounded Confidence
View PDFAbstract:The problem of analyzing the performance of networked agents exchanging evidence in a dynamic network has recently grown in importance. This problem has relevance in signal and data fusion network applications and in studying opinion and consensus dynamics in social networks. Due to its capability of handling a wider variety of uncertainties and ambiguities associated with evidence, we use the framework of Dempster-Shafer (DS) theory to capture the opinion of an agent. We then examine the consensus among agents in dynamic networks in which an agent can utilize either a cautious or receptive updating strategy. In particular, we examine the case of bounded confidence updating where an agent exchanges its opinion only with neighboring nodes possessing 'similar' evidence. In a fusion network, this captures the case in which nodes only update their state based on evidence consistent with the node's own evidence. In opinion dynamics, this captures the notions of Social Judgment Theory (SJT) in which agents update their opinions only with other agents possessing opinions closer to their own. Focusing on the two special DS theoretic cases where an agent state is modeled as a Dirichlet body of evidence and a probability mass function (p.m.f.), we utilize results from matrix theory, graph theory, and networks to prove the existence of consensus agent states in several time-varying network cases of interest. For example, we show the existence of a consensus in which a subset of network nodes achieves a consensus that is adopted by follower network nodes. Of particular interest is the case of multiple opinion leaders, where we show that the agents do not reach a consensus in general, but rather converge to 'opinion clusters'. Simulation results are provided to illustrate the main results.
Submission history
From: Kamal Premaratne [view email][v1] Wed, 25 May 2016 12:46:02 UTC (1,320 KB)
Current browse context:
cs.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.