Computer Science > Social and Information Networks
[Submitted on 26 May 2016]
Title:Structural balance and opinion separation in trust-mistrust social networks
View PDFAbstract:Structural balance theory has been developed in sociology and psychology to explain how interacting agents, e.g., countries, political parties, opinionated individuals, with mixed trust and mistrust relationships evolve into polarized camps. Recent results have shown that structural balance is necessary for polarization in networks with fixed, strongly connected neighbor relationships when the opinion dynamics are described by DeGroot-type averaging rules. We develop this line of research in this paper in two steps. First, we consider fixed, not necessarily strongly connected, neighbor relationships. It is shown that if the network includes a strongly connected subnetwork containing mistrust, which influences the rest of the network, then no opinion clustering is possible when that subnetwork is not structurally balanced; all the opinions become neutralized in the end. In contrast, it is shown that when that subnetwork is indeed structurally balanced, the agents of the subnetwork evolve into two polarized camps and the opinions of all other agents in the network spread between these two polarized opinions. Second, we consider time-varying neighbor relationships. We show that the opinion separation criteria carry over if the conditions for fixed graphs are extended to joint graphs. The results are developed for both discrete-time and continuous-time models.
Current browse context:
cs.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.