Nonlinear Sciences > Chaotic Dynamics
[Submitted on 12 Mar 2018 (v1), last revised 16 May 2018 (this version, v2)]
Title:Quantum correlations for a simple kicked system with mixed phase space
View PDFAbstract:We investigate both the classical and quantum dynamics for a simple kicked system (the standard map) that classically has mixed phase space. For initial conditions in a portion of the chaotic region that is close enough to the regular region, the phenomenon of sticking leads to a power-law decay with time of the classical correlation function of a simple observable. Quantum mechanically, we find the same behavior, but with a smaller exponent. We consider various possible explanations of this phenomenon, and settle on a modification of the Meiss--Ott Markov tree model that takes into account quantum limitations on the flux through a turnstile between regions corresponding to states on the tree. Further work is needed to better understand the quantum behavior.
Submission history
From: Or Alus [view email][v1] Mon, 12 Mar 2018 08:21:57 UTC (5,356 KB)
[v2] Wed, 16 May 2018 18:32:56 UTC (5,357 KB)
Current browse context:
nlin.CD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.