Quantitative Biology > Neurons and Cognition
[Submitted on 12 Jun 2019]
Title:Hysteresis, neural avalanches and critical behaviour near a first-order transition of a spiking neural network
View PDFAbstract:Many experimental results, both in-vivo and in-vitro, support the idea that the brain cortex operates near a critical point, and at the same time works as a reservoir of precise spatio-temporal patterns. However the mechanism at the basis of these observations is still not clear. In this paper we introduce a model which combines both these features, showing that scale-free avalanches are the signature of a system posed near the spinodal line of a first order transition, with many spatio-temporal patterns stored as dynamical metastable attractors. Specifically, we studied a network of leaky integrate and fire neurons, whose connections are the result of the learning of multiple spatio-temporal dynamical patterns, each with a randomly chosen ordering of the neurons. We found that the network shows a first order transition between a low spiking rate disordered state (down), and a high rate state characterized by the emergence of collective activity and the replay of one of the stored patterns (up). The transition is characterized by hysteresis, or alternation of up and down states, depending on the lifetime of the metastable states. In both cases, critical features and neural avalanches are observed. Notably, critical phenomena occur at the edge of a discontinuous phase transition, as recently observed in a network of glow lamps.
Submission history
From: Antonio de Candia [view email][v1] Wed, 12 Jun 2019 14:26:43 UTC (1,627 KB)
Current browse context:
q-bio.NC
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.