Computer Science > Machine Learning
[Submitted on 25 Oct 2024]
Title:Coordinated Reply Attacks in Influence Operations: Characterization and Detection
View PDF HTML (experimental)Abstract:Coordinated reply attacks are a tactic observed in online influence operations and other coordinated campaigns to support or harass targeted individuals, or influence them or their followers. Despite its potential to influence the public, past studies have yet to analyze or provide a methodology to detect this tactic. In this study, we characterize coordinated reply attacks in the context of influence operations on Twitter. Our analysis reveals that the primary targets of these attacks are influential people such as journalists, news media, state officials, and politicians.
We propose two supervised machine-learning models, one to classify tweets to determine whether they are targeted by a reply attack, and one to classify accounts that reply to a targeted tweet to determine whether they are part of a coordinated attack. The classifiers achieve AUC scores of 0.88 and 0.97, respectively. These results indicate that accounts involved in reply attacks can be detected, and the targeted accounts themselves can serve as sensors for influence operation detection.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.