Condensed Matter > Strongly Correlated Electrons
[Submitted on 6 Nov 2024]
Title:New classes of quantum anomalous Hall crystals in multilayer graphene
View PDF HTML (experimental)Abstract:The recent experimental observation of quantum anomalous Hall (QAH) effects in the rhombohedrally stacked pentalayer graphene has motivated theoretical discussions on the possibility of quantum anomalous Hall crystal (QAHC), a topological version of Wigner crystal. Conventionally Wigner crystal was assumed to have a period $a_{\text{crystal}}=1/\sqrt{n}$ locked to the density $n$. In this work we propose new types of topological Wigner crystals labeled as QAHC-$z$ with period $a_{\text{crystal}}=\sqrt{z/n}$. In rhombohedrally stacked graphene aligned with hexagon boron nitride~(hBN), we find parameter regimes where QAHC-2 and QAHC-3 have lower energy than the conventional QAHC-1 at total filling $\nu=1$ per moiré unit cell. These states all have total Chern number $C_\mathrm{tot}=1$ and are consistent with the QAH effect observed in the experiments. The larger period QAHC states have better kinetic energy due to the unique Mexican-hat dispersion of the pentalayer graphene, which can compensate for the loss in the interaction energy. Unlike QAHC-1, QAHC-2 and QAHC-3 also break the moiré translation symmetry and are sharply distinct from a moiré band insulator. We also briefly discuss the competition between integer QAHC and fractional QAHC states at filling $\nu=2/3$. Besides, we notice the importance of the moiré potential. A larger moiré potential can greatly change the phase diagram and even favors a QAHC-1 ansatz with $C=2$ Chern band.
Current browse context:
cond-mat.str-el
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.