Mathematics > Numerical Analysis
[Submitted on 13 Nov 2024]
Title:A Vectorial Envelope Maxwell Formulation for Electromagnetic Waveguides with Application to Nonlinear Fiber Optics
View PDF HTML (experimental)Abstract:This article presents an ultraweak discontinuous Petrov-Galerkin (DPG) formulation of the time-harmonic Maxwell equations for the vectorial envelope of the electromagnetic field in a weakly-guiding multi-mode fiber waveguide. This formulation is derived using an envelope ansatz for the vector-valued electric and magnetic field components, factoring out an oscillatory term of $exp(-i \mathsf{k}z)$ with a user-defined wavenumber $\mathsf{k}$, where $z$ is the longitudinal fiber axis and field propagation direction. The resulting formulation is a modified system of the time-harmonic Maxwell equations for the vectorial envelope of the propagating field. This envelope is less oscillatory in the $z$-direction than the original field, so that it can be more efficiently discretized and computed, enabling solution of the vectorial DPG Maxwell system for $1000\times$ longer fibers than previously possible. Different approaches for incorporating a perfectly matched layer for absorbing the outgoing wave modes at the fiber end are derived and compared numerically. The resulting formulation is used to solve a 3D Maxwell model of an ytterbium-doped active gain fiber amplifier, coupled with the heat equation for including thermal effects. The nonlinear model is then used to simulate thermally-induced transverse mode instability (TMI). The numerical experiments demonstrate that it is computationally feasible to perform simulations and analysis of real-length optical fiber laser amplifiers using discretizations of the full vectorial time-harmonic Maxwell equations. The approach promises a new high-fidelity methodology for analyzing TMI in high-power fiber laser systems and is extendable to including other nonlinearities.
Submission history
From: Stefan Henneking [view email][v1] Wed, 13 Nov 2024 23:47:24 UTC (5,442 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.