Mathematics > Numerical Analysis
[Submitted on 14 Nov 2024]
Title:An Asymptotic-Preserving Scheme for Isentropic Flow in Pipe Networks
View PDF HTML (experimental)Abstract:We consider the simulation of isentropic flow in pipelines and pipe networks. Standard operating conditions in pipe networks suggest an emphasis to simulate low Mach and high friction regimes -- however, the system is stiff in these regimes and conventional explicit approximation techniques prove quite costly and often impractical. To combat these inefficiencies, we develop a novel asymptotic-preserving scheme that is uniformly consistent and stable for all Mach regimes. The proposed method for a single pipeline follows the flux splitting suggested in [Haack et al., Commun. Comput. Phys., 12 (2012), pp. 955--980], in which the flux is separated into stiff and non-stiff portions then discretized in time using an implicit-explicit approach. The non-stiff part is advanced in time by an explicit hyperbolic solver; we opt for the second-order central-upwind finite volume scheme. The stiff portion is advanced in time implicitly using an approach based on Rosenbrock-type Runge-Kutta methods, which ultimately reduces this implicit stage to a discretization of a linear elliptic equation.
To extend to full pipe networks, the scheme on a single pipeline is paired with coupling conditions defined at pipe-to-pipe intersections to ensure a mathematically well-posed problem. We show that the coupling conditions remain well-posed in the low Mach/high friction limit -- which, when used to define the ghost cells of each pipeline, results in a method that is accurate across these intersections in all regimes. The proposed method is tested on several numerical examples and produces accurate, non-oscillatory results with run times independent of the Mach number.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.