Mathematical Physics
[Submitted on 14 Nov 2024]
Title:Discrete Dirac structures and discrete Lagrange--Dirac dynamical systems in mechanics
View PDF HTML (experimental)Abstract:In this paper, we propose the concept of $(\pm)$-discrete Dirac structures over a manifold, where we define $(\pm)$-discrete two-forms on the manifold and incorporate discrete constraints using $(\pm)$-finite difference maps. Specifically, we develop $(\pm)$-discrete induced Dirac structures as discrete analogues of the induced Dirac structure on the cotangent bundle over a configuration manifold, as described by Yoshimura and Marsden (2006). We demonstrate that $(\pm)$-discrete Lagrange--Dirac systems can be naturally formulated in conjunction with the $(\pm)$-induced Dirac structure on the cotangent bundle. Furthermore, we show that the resulting equations of motion are equivalent to the $(\pm)$-discrete Lagrange--d'Alembert equations proposed in Cortés and Martínez (2001) and McLachlan and Perlmutter (2006). We also clarify the variational structures of the discrete Lagrange--Dirac dynamical systems within the framework of the $(\pm)$-discrete Lagrange--d'Alembert--Pontryagin principle. Finally, we validate the proposed discrete Lagrange--Dirac systems with some illustrative examples of nonholonomic systems through numerical tests.
Submission history
From: Hiroaki Yoshimura [view email][v1] Thu, 14 Nov 2024 15:47:47 UTC (2,651 KB)
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.