Mathematics > Optimization and Control
[Submitted on 14 Nov 2024]
Title:Neural Operators Can Play Dynamic Stackelberg Games
View PDF HTML (experimental)Abstract:Dynamic Stackelberg games are a broad class of two-player games in which the leader acts first, and the follower chooses a response strategy to the leader's strategy. Unfortunately, only stylized Stackelberg games are explicitly solvable since the follower's best-response operator (as a function of the control of the leader) is typically analytically intractable. This paper addresses this issue by showing that the \textit{follower's best-response operator} can be approximately implemented by an \textit{attention-based neural operator}, uniformly on compact subsets of adapted open-loop controls for the leader. We further show that the value of the Stackelberg game where the follower uses the approximate best-response operator approximates the value of the original Stackelberg game. Our main result is obtained using our universal approximation theorem for attention-based neural operators between spaces of square-integrable adapted stochastic processes, as well as stability results for a general class of Stackelberg games.
Submission history
From: Anastasis Kratsios [view email][v1] Thu, 14 Nov 2024 18:12:06 UTC (1,043 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.