High Energy Physics - Phenomenology
[Submitted on 15 Nov 2024]
Title:Quantum similarity learning for anomaly detection
View PDF HTML (experimental)Abstract:Anomaly detection is a vital technique for exploring signatures of new physics Beyond the Standard Model (BSM) at the Large Hadron Collider (LHC). The vast number of collisions generated by the LHC demands sophisticated deep learning techniques. Similarity learning, a self-supervised machine learning, detects anomalous signals by estimating their similarity to background events. In this paper, we explore the potential of quantum computers for anomaly detection through similarity learning, leveraging the power of quantum computing to enhance the known similarity learning method. In the realm of noisy intermediate-scale quantum (NISQ) devices, we employ a hybrid classical-quantum network to search for heavy scalar resonances in the di-Higgs production channel. In the absence of quantum noise, the hybrid network demonstrates improvement over the known similarity learning method. Moreover, we employ a clustering algorithm to reduce measurement noise from limited shot counts, resulting in $9\%$ improvement in the hybrid network performance. Our analysis highlights the applicability of quantum algorithms for LHC data analysis, where improvements are anticipated with the advent of fault-tolerant quantum computers.
Current browse context:
hep-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.