Computer Science > Information Theory
[Submitted on 15 Nov 2024]
Title:Jointly Optimizing Power Allocation and Device Association for Robust IoT Networks under Infeasible Circumstances
View PDF HTML (experimental)Abstract:Jointly optimizing power allocation and device association is crucial in Internet-of-Things (IoT) networks to ensure devices achieve their data throughput requirements. Device association, which assigns IoT devices to specific access points (APs), critically impacts resource allocation. Many existing works often assume all data throughput requirements are satisfied, which is impractical given resource limitations and diverse demands. When requirements cannot be met, the system becomes infeasible, causing congestion and degraded performance. To address this problem, we propose a novel framework to enhance IoT system robustness by solving two problems, comprising maximizing the number of satisfied IoT devices and jointly maximizing both the number of satisfied devices and total network throughput. These objectives often conflict under infeasible circumstances, necessitating a careful balance. We thus propose a modified branch-and-bound (BB)-based method to solve the first problem. An iterative algorithm is proposed for the second problem that gradually increases the number of satisfied IoT devices and improves the total network throughput. We employ a logarithmic approximation for a lower bound on data throughput and design a fixed-point algorithm for power allocation, followed by a coalition game-based method for device association. Numerical results demonstrate the efficiency of the proposed algorithm, serving fewer devices than the BB-based method but with faster running time and higher total throughput.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.