Computer Science > Multiagent Systems
[Submitted on 15 Nov 2024]
Title:Multi-agent Path Finding for Timed Tasks using Evolutionary Games
View PDF HTML (experimental)Abstract:Autonomous multi-agent systems such as hospital robots and package delivery drones often operate in highly uncertain environments and are expected to achieve complex temporal task objectives while ensuring safety. While learning-based methods such as reinforcement learning are popular methods to train single and multi-agent autonomous systems under user-specified and state-based reward functions, applying these methods to satisfy trajectory-level task objectives is a challenging problem. Our first contribution is the use of weighted automata to specify trajectory-level objectives, such that, maximal paths induced in the weighted automaton correspond to desired trajectory-level behaviors. We show how weighted automata-based specifications go beyond timeliness properties focused on deadlines to performance properties such as expeditiousness. Our second contribution is the use of evolutionary game theory (EGT) principles to train homogeneous multi-agent teams targeting homogeneous task objectives. We show how shared experiences of agents and EGT-based policy updates allow us to outperform state-of-the-art reinforcement learning (RL) methods in minimizing path length by nearly 30\% in large spaces. We also show that our algorithm is computationally faster than deep RL methods by at least an order of magnitude. Additionally our results indicate that it scales better with an increase in the number of agents as compared to other methods.
Submission history
From: Anand Balakrishnan [view email][v1] Fri, 15 Nov 2024 20:10:25 UTC (2,967 KB)
Current browse context:
cs.MA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.