Computer Science > Machine Learning
[Submitted on 16 Nov 2024]
Title:Conformation Generation using Transformer Flows
View PDF HTML (experimental)Abstract:Estimating three-dimensional conformations of a molecular graph allows insight into the molecule's biological and chemical functions. Fast generation of valid conformations is thus central to molecular modeling. Recent advances in graph-based deep networks have accelerated conformation generation from hours to seconds. However, current network architectures do not scale well to large molecules. Here we present ConfFlow, a flow-based model for conformation generation based on transformer networks. In contrast with existing approaches, ConfFlow directly samples in the coordinate space without enforcing any explicit physical constraints. The generative procedure is highly interpretable and is akin to force field updates in molecular dynamics simulation. When applied to the generation of large molecule conformations, ConfFlow improve accuracy by up to $40\%$ relative to state-of-the-art learning-based methods. The source code is made available at this https URL.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.