Condensed Matter > Statistical Mechanics
[Submitted on 18 Nov 2024]
Title:Hilbert space geometry and quantum chaos
View PDFAbstract:The quantum geometric tensor (QGT) characterizes the Hilbert space geometry of the eigenstates of a parameter-dependent Hamiltonian. In recent years, the QGT and related quantities have found extensive theoretical and experimental utility, in particular for quantifying quantum phase transitions both at and out of equilibrium. Here we consider the symmetric part (quantum Riemannian metric) of the QGT for various multi-parametric random matrix Hamiltonians and discuss the possible indication of ergodic or integrable behaviour. We found for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect. Our study thus provides more support for the idea that the landscape of the parameter space yields information on the ergodic-nonergodic transition in complex quantum systems, including the intermediate phase.
Current browse context:
cond-mat.stat-mech
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.