Statistics > Applications
[Submitted on 19 Nov 2024]
Title:Integrating Dynamic Correlation Shifts and Weighted Benchmarking in Extreme Value Analysis
View PDF HTML (experimental)Abstract:This paper presents an innovative approach to Extreme Value Analysis (EVA) by introducing the Extreme Value Dynamic Benchmarking Method (EVDBM). EVDBM integrates extreme value theory to detect extreme events and is coupled with the novel Dynamic Identification of Significant Correlation (DISC)-Thresholding algorithm, which enhances the analysis of key variables under extreme conditions. By integrating return values predicted through EVA into the benchmarking scores, we are able to transform these scores to reflect anticipated conditions more accurately. This provides a more precise picture of how each case is projected to unfold under extreme conditions. As a result, the adjusted scores offer a forward-looking perspective, highlighting potential vulnerabilities and resilience factors for each case in a way that static historical data alone cannot capture. By incorporating both historical and probabilistic elements, the EVDBM algorithm provides a comprehensive benchmarking framework that is adaptable to a range of scenarios and contexts. The methodology is applied to real PV data, revealing critical low - production scenarios and significant correlations between variables, which aid in risk management, infrastructure design, and long-term planning, while also allowing for the comparison of different production plants. The flexibility of EVDBM suggests its potential for broader applications in other sectors where decision-making sensitivity is crucial, offering valuable insights to improve outcomes.
Submission history
From: Dimitrios P. Panagoulias Mr [view email][v1] Tue, 19 Nov 2024 21:00:39 UTC (5,906 KB)
Current browse context:
stat.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.