Computer Science > Machine Learning
[Submitted on 20 Nov 2024]
Title:Investigating Graph Neural Networks and Classical Feature-Extraction Techniques in Activity-Cliff and Molecular Property Prediction
View PDFAbstract:Molecular featurisation refers to the transformation of molecular data into numerical feature vectors. It is one of the key research areas in molecular machine learning and computational drug discovery. Recently, message-passing graph neural networks (GNNs) have emerged as a novel method to learn differentiable features directly from molecular graphs. While such techniques hold great promise, further investigations are needed to clarify if and when they indeed manage to definitively outcompete classical molecular featurisations such as extended-connectivity fingerprints (ECFPs) and physicochemical-descriptor vectors (PDVs). We systematically explore and further develop classical and graph-based molecular featurisation methods for two important tasks: molecular property prediction, in particular, quantitative structure-activity relationship (QSAR) prediction, and the largely unexplored challenge of activity-cliff (AC) prediction. We first give a technical description and critical analysis of PDVs, ECFPs and message-passing GNNs, with a focus on graph isomorphism networks (GINs). We then conduct a rigorous computational study to compare the performance of PDVs, ECFPs and GINs for QSAR and AC-prediction. Following this, we mathematically describe and computationally evaluate a novel twin neural network model for AC-prediction. We further introduce an operation called substructure pooling for the vectorisation of structural fingerprints as a natural counterpart to graph pooling in GNN architectures. We go on to propose Sort & Slice, a simple substructure-pooling technique for ECFPs that robustly outperforms hash-based folding at molecular property prediction. Finally, we outline two ideas for future research: (i) a graph-based self-supervised learning strategy to make classical molecular featurisations trainable, and (ii) trainable substructure-pooling via differentiable self-attention.
Submission history
From: Markus Dablander [view email][v1] Wed, 20 Nov 2024 20:07:48 UTC (22,752 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.