Statistics > Methodology
[Submitted on 20 Nov 2024]
Title:An Economical Approach to Design Posterior Analyses
View PDF HTML (experimental)Abstract:To design Bayesian studies, criteria for the operating characteristics of posterior analyses - such as power and the type I error rate - are often assessed by estimating sampling distributions of posterior probabilities via simulation. In this paper, we propose an economical method to determine optimal sample sizes and decision criteria for such studies. Using our theoretical results that model posterior probabilities as a function of the sample size, we assess operating characteristics throughout the sample size space given simulations conducted at only two sample sizes. These theoretical results are used to construct bootstrap confidence intervals for the optimal sample sizes and decision criteria that reflect the stochastic nature of simulation-based design. We also repurpose the simulations conducted in our approach to efficiently investigate various sample sizes and decision criteria using contour plots. The broad applicability and wide impact of our methodology is illustrated using two clinical examples.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.