Computer Science > Multiagent Systems
[Submitted on 21 Nov 2024]
Title:Synthesising Robust Controllers for Robot Collectives with Recurrent Tasks: A Case Study
View PDFAbstract:When designing correct-by-construction controllers for autonomous collectives, three key challenges are the task specification, the modelling, and its use at practical scale. In this paper, we focus on a simple yet useful abstraction for high-level controller synthesis for robot collectives with optimisation goals (e.g., maximum cleanliness, minimum energy consumption) and recurrence (e.g., re-establish contamination and charge thresholds) and safety (e.g., avoid full discharge, mutually exclusive room occupation) constraints. Due to technical limitations (related to scalability and using constraints in the synthesis), we simplify our graph-based setting from a stochastic two-player game into a single-player game on a partially observable Markov decision process (POMDP). Robustness against environmental uncertainty is encoded via partial observability. Linear-time correctness properties are verified separately after synthesising the POMDP strategy. We contribute at-scale guidance on POMDP modelling and controller synthesis for tasked robot collectives exemplified by the scenario of battery-driven robots responsible for cleaning public buildings with utilisation constraints.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Thu, 21 Nov 2024 18:08:18 UTC (194 KB)
Current browse context:
cs.MA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.