Computer Science > Artificial Intelligence
[Submitted on 22 Nov 2024]
Title:Learning Lifted STRIPS Models from Action Traces Alone: A Simple, General, and Scalable Solution
View PDF HTML (experimental)Abstract:Learning STRIPS action models from action traces alone is a challenging problem as it involves learning the domain predicates as well. In this work, a novel approach is introduced which, like the well-known LOCM systems, is scalable, but like SAT approaches, is sound and complete. Furthermore, the approach is general and imposes no restrictions on the hidden domain or the number or arity of the predicates. The new learning method is based on an \emph{efficient, novel test} that checks whether the assumption that a predicate is affected by a set of action patterns, namely, actions with specific argument positions, is consistent with the traces. The predicates and action patterns that pass the test provide the basis for the learned domain that is then easily completed with preconditions and static predicates. The new method is studied theoretically and experimentally. For the latter, the method is evaluated on traces and graphs obtained from standard classical domains like the 8-puzzle, which involve hundreds of thousands of states and transitions. The learned representations are then verified on larger instances.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.