Quantum Physics
[Submitted on 22 Nov 2024]
Title:Efficient Eigenstate Preparation in an Integrable Model with Hilbert Space Fragmentation
View PDF HTML (experimental)Abstract:We consider the preparation of all the eigenstates of spin chains using quantum circuits. It is known that generic eigenstates of free-fermionic spin chains can be prepared with circuits whose depth grows only polynomially with the length of the chain and the number of particles. We show that the polynomial growth is also achievable for selected interacting models where the interaction between the particles is sufficiently simple. Our working example is the folded XXZ model, an integrable spin chain that exhibits Hilbert space fragmentation. We present the explicit quantum circuits that prepare arbitrary eigenstates of this model on an open chain efficiently. We perform error-mitigated noisy simulations with circuits of up to 13 qubits and different connectivities between qubits, achieving a relative error below 5%. As a byproduct, we extend a recent reformulation of the Bethe ansatz as a quantum circuit from closed to open boundary conditions.
Submission history
From: Alejandro Sopena [view email][v1] Fri, 22 Nov 2024 18:57:08 UTC (1,506 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.