Computer Science > Machine Learning
[Submitted on 21 Nov 2024]
Title:CODE-CL: COnceptor-Based Gradient Projection for DEep Continual Learning
View PDF HTML (experimental)Abstract:Continual learning, or the ability to progressively integrate new concepts, is fundamental to intelligent beings, enabling adaptability in dynamic environments. In contrast, artificial deep neural networks face the challenge of catastrophic forgetting when learning new tasks sequentially. To alleviate the problem of forgetting, recent approaches aim to preserve essential weight subspaces for previous tasks by limiting updates to orthogonal subspaces via gradient projection. While effective, this approach can lead to suboptimal performance, particularly when tasks are highly correlated. In this work, we introduce COnceptor-based gradient projection for DEep Continual Learning (CODE-CL), a novel method that leverages conceptor matrix representations, a computational model inspired by neuroscience, to more flexibly handle highly correlated tasks. CODE-CL encodes directional importance within the input space of past tasks, allowing new knowledge integration in directions modulated by $1-S$, where $S$ represents the direction's relevance for prior tasks. Additionally, we analyze task overlap using conceptor-based representations to identify highly correlated tasks, facilitating efficient forward knowledge transfer through scaled projection within their intersecting subspace. This strategy enhances flexibility, allowing learning in correlated tasks without significantly disrupting previous knowledge. Extensive experiments on continual learning image classification benchmarks validate CODE-CL's efficacy, showcasing superior performance with minimal forgetting, outperforming most state-of-the-art methods.
Submission history
From: Marco Paul E. Apolinario [view email][v1] Thu, 21 Nov 2024 22:31:06 UTC (396 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.