Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 24 Nov 2024]
Title:Signature of Triaxially Precessing Magnetars in Gamma-ray Burst X-Ray Afterglows
View PDF HTML (experimental)Abstract:The X-ray afterglows of some gamma-ray bursts (GRBs) exhibit plateaus, which can be explained by the internal dissipation of a newborn millisecond magnetar wind. In the early phase of these newborn magnetars, the magnetic inclination angle undergoes periodic changes due to precession, leading to periodic modulation of the injection luminosity due to magnetic dipole radiation. This may result in quasi-periodic oscillations (QPOs) on the plateaus. In this paper, we identify four GRBs with regular flux variations on their X-ray afterglow plateaus from Swift/XRT data before November 2023, three of which exhibit periodicity. Based on the likelihood of supporting a precessing magnetar as the central engine, we classify them into three categories: Gold (GRB 060202 and GRB 180620A), Silver (GRB 050730), and Bronze (GRB 210610A). We invoke a model of magnetic dipole radiation emitted by a triaxially freely precessing magnetar whose spin-down is dominated by electromagnetic radiation, to fit the light curves. Our model successfully reproduces the light curves of these four GRBs, including the regular flux variations on the plateaus and their periodicity (if present). Our work provides further evidence for early precession in newborn millisecond magnetars in GRBs.
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.