Mathematics > Group Theory
[Submitted on 29 Apr 2004 (v1), last revised 17 Jul 2004 (this version, v3)]
Title:Equivariant embeddings of trees into hyperbolic spaces
View PDFAbstract: We study isometric actions of tree automorphism groups on the infinite-dimensional hyperbolic spaces. On the one hand, we exhibit a general one-parameter family of such representations and analyse the corresponding equivariant embeddings of the trees, showing that they are convex-cocompact and asymptotically isometric. On the other hand, focusing on the case of sufficiently transitive groups of automorphisms of locally finite trees, we classify completely all irreducible representations by isometries of hyperbolic spaces. It turns out that in this case our one-parameter family exhausts all non-elementary representations.
Submission history
From: Nicolas Monod [view email][v1] Thu, 29 Apr 2004 15:12:58 UTC (32 KB)
[v2] Thu, 29 Apr 2004 20:02:00 UTC (32 KB)
[v3] Sat, 17 Jul 2004 17:47:44 UTC (32 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.